找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Generalized Curvatures; Jean-Marie Morvan Book 2008 Springer-Verlag Berlin Heidelberg 2008 Gaussian curvature.Riemannian geometry.Riemanni

[復制鏈接]
樓主: Harrison
41#
發(fā)表于 2025-3-28 16:22:27 | 只看該作者
42#
發(fā)表于 2025-3-28 20:00:04 | 只看該作者
Convex SubsetsThere is an abundant literature on convexity, crucial in many fields of mathematics. We shall mention the basic definitions and some fundamental results (without proof), useful for our topic. In particular, we shall focus on the properties of the volume of a convex body and its boundary. The reader can consult [9, 71, 74, 79] for details.
43#
發(fā)表于 2025-3-29 00:35:14 | 只看該作者
Differential Forms and Densities on ECurvature measures will be defined by integrating .. Let us introduce their definitions, beginning with exterior algebra in a vector space and continuing with the smooth category. We only give here a brief survey. See [59] for a complete one.
44#
發(fā)表于 2025-3-29 04:14:57 | 只看該作者
45#
發(fā)表于 2025-3-29 07:42:34 | 只看該作者
Approximation of the Length of CurvesWe have seen in Chap. 13 that the length of a curve is classically defined as the supremum of the lengths of polygonal lines inscribed in it. Our purpose here is to compare the length of a given smooth curve with the length of a curve close to it, or more precisely with the length of a polygonal line inscribed in it.
46#
發(fā)表于 2025-3-29 14:50:01 | 只看該作者
Tubes FormulaIn Chap. 16, we have seen that the volume of the parallel body of a convex body with smooth boundary is a polynomial whose coefficients depend on the second fundamental form of the boundary. This formula has been generalized by Weyl [82] for the volume of tubes around any smooth submanifold in E., with or without boundary.
47#
發(fā)表于 2025-3-29 15:34:50 | 只看該作者
Subsets of Positive ReachIn previous chapters, we have seen that it is possible to define . which describe the global shape of two classes of subsets of E., namely the convex bodies and the smooth submanifolds. A good challenge is to find larger classes of subsets on which a more general theory holds. In 1958, Federer [43] made a major advance in two directions:
48#
發(fā)表于 2025-3-29 22:50:04 | 只看該作者
49#
發(fā)表于 2025-3-30 03:55:23 | 只看該作者
Stefan M. Duma Ph.D.,Steven Rowson Ph.D.ate precisely what we mean by a geometric quantity. Consider a subset . of points of the .-dimensional Euclidean space E., endowed with its standard scalar product < ., . >. Let . be the group of rigid motions of E.. We say that a quantity .(.) associated to . is . if the corresponding quantity .[.(
50#
發(fā)表于 2025-3-30 06:14:03 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 15:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
庄河市| 镇安县| 乌兰察布市| 吉木萨尔县| 磴口县| 淄博市| 安远县| 富民县| 海安县| 朝阳市| 五寨县| 涟水县| 曲松县| 江津市| 兰考县| 湖南省| 怀柔区| 铅山县| 故城县| 施甸县| 濮阳市| 长春市| 武安市| 黑水县| 漳浦县| 朝阳区| 岳池县| 宜春市| 乌拉特中旗| 东乡| 达孜县| 阳朔县| 方山县| 克拉玛依市| 平舆县| 鲜城| 万年县| 会同县| 怀柔区| 佛教| 章丘市|