找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Generalized Curvatures; Jean-Marie Morvan Book 2008 Springer-Verlag Berlin Heidelberg 2008 Gaussian curvature.Riemannian geometry.Riemanni

[復(fù)制鏈接]
查看: 53965|回復(fù): 55
樓主
發(fā)表于 2025-3-21 17:25:45 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Generalized Curvatures
編輯Jean-Marie Morvan
視頻videohttp://file.papertrans.cn/383/382195/382195.mp4
概述First coherent and complete account of this subject in book form
叢書(shū)名稱Geometry and Computing
圖書(shū)封面Titlebook: Generalized Curvatures;  Jean-Marie Morvan Book 2008 Springer-Verlag Berlin Heidelberg 2008 Gaussian curvature.Riemannian geometry.Riemanni
描述The central object of this book is the measure of geometric quantities describing N a subset of the Euclidean space (E ,), endowed with its standard scalar product. Let us state precisely what we mean by a geometric quantity. Consider a subset N S of points of the N-dimensional Euclidean space E , endowed with its standard N scalar product. LetG be the group of rigid motions of E . We say that a 0 quantity Q(S) associated toS is geometric with respect toG if the corresponding 0 quantity Q[g(S)] associated to g(S) equals Q(S), for all g?G . For instance, the 0 diameter ofS and the area of the convex hull ofS are quantities geometric with respect toG . But the distance from the origin O to the closest point ofS is not, 0 since it is not invariant under translations ofS. It is important to point out that the property of being geometric depends on the chosen group. For instance, ifG is the 1 N group of projective transformations of E , then the property ofS being a circle is geometric forG but not forG , while the property of being a conic or a straight 0 1 line is geometric for bothG andG . This point of view may be generalized to any 0 1 subsetS of any vector space E endowed with a g
出版日期Book 2008
關(guān)鍵詞Gaussian curvature; Riemannian geometry; Riemannian manifold; computational geometry; computer graphics;
版次1
doihttps://doi.org/10.1007/978-3-540-73792-6
isbn_softcover978-3-642-09300-5
isbn_ebook978-3-540-73792-6Series ISSN 1866-6795 Series E-ISSN 1866-6809
issn_series 1866-6795
copyrightSpringer-Verlag Berlin Heidelberg 2008
The information of publication is updating

書(shū)目名稱Generalized Curvatures影響因子(影響力)




書(shū)目名稱Generalized Curvatures影響因子(影響力)學(xué)科排名




書(shū)目名稱Generalized Curvatures網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Generalized Curvatures網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Generalized Curvatures被引頻次




書(shū)目名稱Generalized Curvatures被引頻次學(xué)科排名




書(shū)目名稱Generalized Curvatures年度引用




書(shū)目名稱Generalized Curvatures年度引用學(xué)科排名




書(shū)目名稱Generalized Curvatures讀者反饋




書(shū)目名稱Generalized Curvatures讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:18:18 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:18:01 | 只看該作者
地板
發(fā)表于 2025-3-22 06:10:23 | 只看該作者
5#
發(fā)表于 2025-3-22 12:24:14 | 只看該作者
Riemannian Submanifoldsect generalization in any dimension and codimension of curves and surfaces in E3. Their extrinsic curvatures generalize the Gauss and mean curvatures of surfaces. We review (without proof) some fundamental notions on the subject. Classical books on Riemannian submanifolds are [26, 27].
6#
發(fā)表于 2025-3-22 13:12:29 | 只看該作者
7#
發(fā)表于 2025-3-22 19:55:01 | 只看該作者
8#
發(fā)表于 2025-3-23 01:11:11 | 只看該作者
The Steiner Formula for Convex Subsetshat the convexity of .implies that this volume is polynomial in ε, the coefficients (Φ.(.),0.) depending on the geometry of .[77]. Up to a constant, these coefficients (called the . of Minkowski) are the valuations, which appear in Definition 23 and Theorem 28 of Hadwiger. Moreover, these coefficien
9#
發(fā)表于 2025-3-23 05:00:54 | 只看該作者
10#
發(fā)表于 2025-3-23 05:35:39 | 只看該作者
Motivation: Curvesese invariants can be done. Our goal is to investigate a framework in which a geometric theory of both smooth and discrete objects is simultaneously possible. To motivate this work, we begin with two simple examples: the length and curvature of a curve.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 15:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
格尔木市| 芜湖市| 清徐县| 新密市| 汉川市| 汝州市| 临桂县| 武冈市| 佳木斯市| 黄陵县| 桃园市| 蒙阴县| 吉水县| 大荔县| 藁城市| 沙雅县| 保靖县| 金阳县| 恩平市| 平乐县| 岳西县| 龙泉市| 南雄市| 河北区| 灯塔市| 西乌珠穆沁旗| 蓝田县| 万源市| 江门市| 西青区| 东兴市| 闵行区| 乳山市| 清原| 大足县| 皋兰县| 上杭县| 阳泉市| 铁岭市| 台东县| 古交市|