找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Generalized Curvatures; Jean-Marie Morvan Book 2008 Springer-Verlag Berlin Heidelberg 2008 Gaussian curvature.Riemannian geometry.Riemanni

[復(fù)制鏈接]
查看: 53971|回復(fù): 55
樓主
發(fā)表于 2025-3-21 17:25:45 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Generalized Curvatures
編輯Jean-Marie Morvan
視頻videohttp://file.papertrans.cn/383/382195/382195.mp4
概述First coherent and complete account of this subject in book form
叢書名稱Geometry and Computing
圖書封面Titlebook: Generalized Curvatures;  Jean-Marie Morvan Book 2008 Springer-Verlag Berlin Heidelberg 2008 Gaussian curvature.Riemannian geometry.Riemanni
描述The central object of this book is the measure of geometric quantities describing N a subset of the Euclidean space (E ,), endowed with its standard scalar product. Let us state precisely what we mean by a geometric quantity. Consider a subset N S of points of the N-dimensional Euclidean space E , endowed with its standard N scalar product. LetG be the group of rigid motions of E . We say that a 0 quantity Q(S) associated toS is geometric with respect toG if the corresponding 0 quantity Q[g(S)] associated to g(S) equals Q(S), for all g?G . For instance, the 0 diameter ofS and the area of the convex hull ofS are quantities geometric with respect toG . But the distance from the origin O to the closest point ofS is not, 0 since it is not invariant under translations ofS. It is important to point out that the property of being geometric depends on the chosen group. For instance, ifG is the 1 N group of projective transformations of E , then the property ofS being a circle is geometric forG but not forG , while the property of being a conic or a straight 0 1 line is geometric for bothG andG . This point of view may be generalized to any 0 1 subsetS of any vector space E endowed with a g
出版日期Book 2008
關(guān)鍵詞Gaussian curvature; Riemannian geometry; Riemannian manifold; computational geometry; computer graphics;
版次1
doihttps://doi.org/10.1007/978-3-540-73792-6
isbn_softcover978-3-642-09300-5
isbn_ebook978-3-540-73792-6Series ISSN 1866-6795 Series E-ISSN 1866-6809
issn_series 1866-6795
copyrightSpringer-Verlag Berlin Heidelberg 2008
The information of publication is updating

書目名稱Generalized Curvatures影響因子(影響力)




書目名稱Generalized Curvatures影響因子(影響力)學(xué)科排名




書目名稱Generalized Curvatures網(wǎng)絡(luò)公開度




書目名稱Generalized Curvatures網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Generalized Curvatures被引頻次




書目名稱Generalized Curvatures被引頻次學(xué)科排名




書目名稱Generalized Curvatures年度引用




書目名稱Generalized Curvatures年度引用學(xué)科排名




書目名稱Generalized Curvatures讀者反饋




書目名稱Generalized Curvatures讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:18:18 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:18:01 | 只看該作者
地板
發(fā)表于 2025-3-22 06:10:23 | 只看該作者
5#
發(fā)表于 2025-3-22 12:24:14 | 只看該作者
Riemannian Submanifoldsect generalization in any dimension and codimension of curves and surfaces in E3. Their extrinsic curvatures generalize the Gauss and mean curvatures of surfaces. We review (without proof) some fundamental notions on the subject. Classical books on Riemannian submanifolds are [26, 27].
6#
發(fā)表于 2025-3-22 13:12:29 | 只看該作者
7#
發(fā)表于 2025-3-22 19:55:01 | 只看該作者
8#
發(fā)表于 2025-3-23 01:11:11 | 只看該作者
The Steiner Formula for Convex Subsetshat the convexity of .implies that this volume is polynomial in ε, the coefficients (Φ.(.),0.) depending on the geometry of .[77]. Up to a constant, these coefficients (called the . of Minkowski) are the valuations, which appear in Definition 23 and Theorem 28 of Hadwiger. Moreover, these coefficien
9#
發(fā)表于 2025-3-23 05:00:54 | 只看該作者
10#
發(fā)表于 2025-3-23 05:35:39 | 只看該作者
Motivation: Curvesese invariants can be done. Our goal is to investigate a framework in which a geometric theory of both smooth and discrete objects is simultaneously possible. To motivate this work, we begin with two simple examples: the length and curvature of a curve.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 21:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
尚义县| 阿坝县| 嘉善县| 湖南省| 白沙| 马公市| 确山县| 凤冈县| 滦平县| 大兴区| 沂水县| 那坡县| 茶陵县| 新野县| 江陵县| 岳西县| 龙海市| 黑山县| 永吉县| 丰宁| 佛山市| 温州市| 航空| 平武县| 乌兰浩特市| 玛曲县| 石渠县| 邹平县| 台中市| 涪陵区| 绥芬河市| 侯马市| 丽江市| 当涂县| 五指山市| 精河县| 伊春市| 确山县| 十堰市| 黄平县| 民勤县|