找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Generalized Curvatures; Jean-Marie Morvan Book 2008 Springer-Verlag Berlin Heidelberg 2008 Gaussian curvature.Riemannian geometry.Riemanni

[復(fù)制鏈接]
樓主: Harrison
51#
發(fā)表于 2025-3-30 09:38:33 | 只看該作者
52#
發(fā)表于 2025-3-30 13:04:18 | 只看該作者
53#
發(fā)表于 2025-3-30 16:43:28 | 只看該作者
Oriol T. Valls,Zlatko Tesanovicect generalization in any dimension and codimension of curves and surfaces in E3. Their extrinsic curvatures generalize the Gauss and mean curvatures of surfaces. We review (without proof) some fundamental notions on the subject. Classical books on Riemannian submanifolds are [26, 27].
54#
發(fā)表于 2025-3-30 22:18:05 | 只看該作者
E. Krotscheck,J. L. Epstein,M. Saarelart introduction to this subject. We end this chapter with important theorems used in the approximation and convergence results proved in the succeeding parts of the book. A nice introduction to this subject can be found in [63].
55#
發(fā)表于 2025-3-31 02:29:14 | 只看該作者
56#
發(fā)表于 2025-3-31 06:25:26 | 只看該作者
M. A. Rao,D. A. Rao,K. R. D. Royhat the convexity of .implies that this volume is polynomial in ε, the coefficients (Φ.(.),0.) depending on the geometry of .[77]. Up to a constant, these coefficients (called the . of Minkowski) are the valuations, which appear in Definition 23 and Theorem 28 of Hadwiger. Moreover, these coefficien
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 17:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
苍梧县| 桐乡市| 扎兰屯市| 冀州市| 贺兰县| 广昌县| 清镇市| 东乌珠穆沁旗| 明星| 法库县| 若羌县| 政和县| 凌源市| 翼城县| 廊坊市| 长治县| 张北县| 房产| 礼泉县| 沈丘县| 宁河县| 贵定县| 新泰市| 太保市| 沈丘县| 三亚市| 赤城县| 浮山县| 上犹县| 东乡| 龙南县| 兖州市| 庆城县| 栾城县| 通榆县| 绥阳县| 通州区| 垦利县| 安溪县| 巫溪县| 吴旗县|