找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Generalized Curvatures; Jean-Marie Morvan Book 2008 Springer-Verlag Berlin Heidelberg 2008 Gaussian curvature.Riemannian geometry.Riemanni

[復(fù)制鏈接]
樓主: Harrison
11#
發(fā)表于 2025-3-23 09:45:22 | 只看該作者
12#
發(fā)表于 2025-3-23 15:19:09 | 只看該作者
R. F. Bishop,J. B. Parkinson,Yang Xianiant forms described in Chap. 19 have a typical Riemannian flavor. That is why we give a brief survey of Riemannian geometry. The reader interested in the subject can consult [10], [29], [76], [57, Tome 1, Chaps. 4 and 5], or [67].
13#
發(fā)表于 2025-3-23 20:42:06 | 只看該作者
https://doi.org/10.1007/978-3-0348-0843-9rea of a sequence of triangulations inscribed in a fixed cylinder of E. may tend to infinity when the sequence tends to the cylinder for the Hausdorff topology. We give here a general . by adding a suitable geometric assumption: we assume that the tangent bundle of the sequence tends to the tangent bundle of ., in precise sense.
14#
發(fā)表于 2025-3-24 00:04:22 | 只看該作者
Book 2008calar product. Let us state precisely what we mean by a geometric quantity. Consider a subset N S of points of the N-dimensional Euclidean space E , endowed with its standard N scalar product. LetG be the group of rigid motions of E . We say that a 0 quantity Q(S) associated toS is geometric with re
15#
發(fā)表于 2025-3-24 02:26:04 | 只看該作者
Background on Riemannian Geometryiant forms described in Chap. 19 have a typical Riemannian flavor. That is why we give a brief survey of Riemannian geometry. The reader interested in the subject can consult [10], [29], [76], [57, Tome 1, Chaps. 4 and 5], or [67].
16#
發(fā)表于 2025-3-24 09:36:28 | 只看該作者
17#
發(fā)表于 2025-3-24 11:40:34 | 只看該作者
18#
發(fā)表于 2025-3-24 16:07:36 | 只看該作者
Introduction a circle is geometric for . but not for ., while the property of being a conic or a straight line is geometric for both . and .. This point of view may be generalized to any subset . of any vector space . endowed with a group . acting on it..In this book, we only consider the group of rigid motions
19#
發(fā)表于 2025-3-24 21:04:57 | 只看該作者
20#
發(fā)表于 2025-3-25 00:35:44 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 15:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
遂昌县| 水城县| 基隆市| 安康市| 曲阳县| 甘德县| 宜宾市| 湟源县| 平顺县| 东乡| 桦甸市| 宜君县| 万州区| 北安市| 城市| 文登市| 绥芬河市| 江都市| 龙陵县| 兖州市| 西丰县| 勐海县| 磐安县| 南昌县| 宁南县| 贡觉县| 巴青县| 通榆县| 安化县| 台北市| 仁怀市| 宜丰县| 遵义县| 金川县| 正阳县| 海阳市| 合川市| 靖西县| 扶余县| 雅江县| 水城县|