找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Generalized Curvatures; Jean-Marie Morvan Book 2008 Springer-Verlag Berlin Heidelberg 2008 Gaussian curvature.Riemannian geometry.Riemanni

[復(fù)制鏈接]
樓主: Harrison
51#
發(fā)表于 2025-3-30 09:38:33 | 只看該作者
52#
發(fā)表于 2025-3-30 13:04:18 | 只看該作者
53#
發(fā)表于 2025-3-30 16:43:28 | 只看該作者
Oriol T. Valls,Zlatko Tesanovicect generalization in any dimension and codimension of curves and surfaces in E3. Their extrinsic curvatures generalize the Gauss and mean curvatures of surfaces. We review (without proof) some fundamental notions on the subject. Classical books on Riemannian submanifolds are [26, 27].
54#
發(fā)表于 2025-3-30 22:18:05 | 只看該作者
E. Krotscheck,J. L. Epstein,M. Saarelart introduction to this subject. We end this chapter with important theorems used in the approximation and convergence results proved in the succeeding parts of the book. A nice introduction to this subject can be found in [63].
55#
發(fā)表于 2025-3-31 02:29:14 | 只看該作者
56#
發(fā)表于 2025-3-31 06:25:26 | 只看該作者
M. A. Rao,D. A. Rao,K. R. D. Royhat the convexity of .implies that this volume is polynomial in ε, the coefficients (Φ.(.),0.) depending on the geometry of .[77]. Up to a constant, these coefficients (called the . of Minkowski) are the valuations, which appear in Definition 23 and Theorem 28 of Hadwiger. Moreover, these coefficien
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 15:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武夷山市| 新泰市| 台中市| 肇庆市| 宁都县| 瑞安市| 家居| 邵东县| 抚州市| 肇州县| 宽城| 台中县| 吉木萨尔县| 涟源市| 宜黄县| 广东省| 桑日县| 安泽县| 吉木乃县| 汕头市| 洪湖市| 瑞丽市| 伽师县| 辽阳县| 灵川县| 志丹县| 府谷县| 陇西县| 库伦旗| 昭通市| 长白| 贺兰县| 桦南县| 金湖县| 织金县| 托里县| 馆陶县| 巍山| 张北县| 临猗县| 万宁市|