找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning for Indoor Localization and Navigation; Saideep Tiku,Sudeep Pasricha Book 2023 The Editor(s) (if applicable) and The Auth

[復(fù)制鏈接]
樓主: 富裕
21#
發(fā)表于 2025-3-25 03:29:52 | 只看該作者
Exploiting Fingerprint Correlation for Fingerprint-Based Indoor Localization: A Deep Learning-Based ough fully exploiting the features of different fingerprints is to be explored as well. In this chapter, we investigate the location error of a fingerprint-based indoor localization system with the application of hybrid fingerprints. On this basis, we propose a hybrid fingerprints localization algorithm based on machine learning.
22#
發(fā)表于 2025-3-25 07:57:31 | 只看該作者
A Scalable Framework for Indoor Localization Using Convolutional Neural Networksnatures into images, to create a scalable fingerprinting framework based on convolutional neural networks (CNNs). Our proposed CNN-based indoor localization framework (.) is validated across several indoor locales and shows improvements over the best-known prior works, with an average localization error of <2 meters.
23#
發(fā)表于 2025-3-25 14:15:51 | 只看該作者
24#
發(fā)表于 2025-3-25 16:13:01 | 只看該作者
25#
發(fā)表于 2025-3-25 21:25:52 | 只看該作者
Smartphone Invariant Indoor Localization Using Multi-head Attention Neural Network neural network-based indoor localization framework that is resilient to device heterogeneity. An in-depth analysis of our proposed framework across a variety of indoor environments demonstrates up to 35% accuracy improvement compared to state-of-the-art indoor localization techniques.
26#
發(fā)表于 2025-3-26 03:06:49 | 只看該作者
Book 2023dense city centers, urban canyons, buildings and other covered structures, and subterranean facilities such as underground mines, where GPS signals are severely attenuated or totally blocked. As an alternative to GPS for the outdoors, indoor localization using machine learning is an emerging embedde
27#
發(fā)表于 2025-3-26 06:49:06 | 只看該作者
28#
發(fā)表于 2025-3-26 09:56:40 | 只看該作者
http://image.papertrans.cn/m/image/620623.jpg
29#
發(fā)表于 2025-3-26 12:45:53 | 只看該作者
https://doi.org/10.1007/978-3-031-26712-3Machine learning-based indoor localization; deep learning indoor localization; indoor positioning; indo
30#
發(fā)表于 2025-3-26 18:54:52 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 04:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
万载县| 南陵县| 林芝县| 涞水县| 富阳市| 大庆市| 综艺| 云梦县| 吉木乃县| 肥城市| 德兴市| 宁南县| 金乡县| 大悟县| 新源县| 汶川县| 抚松县| 若尔盖县| 紫阳县| 福鼎市| 锦屏县| 民勤县| 济南市| 林周县| 兴隆县| 华安县| 治县。| 卓尼县| 五寨县| 葫芦岛市| 云安县| 静宁县| 五台县| 定兴县| 江北区| 大余县| 崇阳县| 金门县| 陵川县| 平潭县| 高安市|