找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning for Indoor Localization and Navigation; Saideep Tiku,Sudeep Pasricha Book 2023 The Editor(s) (if applicable) and The Auth

[復(fù)制鏈接]
樓主: 富裕
31#
發(fā)表于 2025-3-27 00:56:16 | 只看該作者
prove theaccuracy, reliability, predictability, and energy-efficiency of indoor localization and navigation. The book identifies severalnovel energy-efficient, real-time, and robust indoor localization techniqu978-3-031-26714-7978-3-031-26712-3
32#
發(fā)表于 2025-3-27 03:57:54 | 只看該作者
33#
發(fā)表于 2025-3-27 06:03:07 | 只看該作者
Facundo Lezama,Federico Larroca,Germán Capdehourat
34#
發(fā)表于 2025-3-27 11:34:33 | 只看該作者
35#
發(fā)表于 2025-3-27 15:09:40 | 只看該作者
Indoor Localization Using Trilateration and Location Fingerprinting Methodsthat in both the line-of-sight and non-line-of-sight experiments, the error is less than 0.5 meter within 3 meters in distance prediction by path loss models. The experimental results show that the trilateration localization algorithm is prone to error. The location fingerprinting-based method shows
36#
發(fā)表于 2025-3-27 19:10:37 | 只看該作者
Fusion of WiFi and IMU Using Swarm Optimization for Indoor Localizationter, we propose a new indoor localization system that integrates the inertial sensing and RSS fingerprinting via a modified Particle Swarm Optimization (PSO)-based algorithm. Different from traditional methods, our proposed method improves the accuracy by a new optimization process, in which the Ine
37#
發(fā)表于 2025-3-28 00:25:17 | 只看該作者
Learning Indoor Area Localization: The Trade-Off Between Expressiveness and Reliabilitycoarser location estimate (e.g., area/zone) with a higher accuracy. The size and shape of the predicted areas determine the model’s expressiveness (user gain) while influencing the degree to which the model provides a correct prediction (reliability). In this chapter we will introduce the area local
38#
發(fā)表于 2025-3-28 04:53:18 | 只看該作者
39#
發(fā)表于 2025-3-28 07:46:59 | 只看該作者
Overview of Approaches for Device Heterogeneity Management During Indoor Localizationnsformation, calibration-free function mapping method, and non-absolute fingerprint method, respectively. The principles of the implementation for these methods are presented in this chapter. Different evaluation metrics are utilized to participate in the comparison of these methods. The advantages
40#
發(fā)表于 2025-3-28 13:59:10 | 只看該作者
Book 2023reless signal variations, and security vulnerabilities. Countering these challenges can improve theaccuracy, reliability, predictability, and energy-efficiency of indoor localization and navigation. The book identifies severalnovel energy-efficient, real-time, and robust indoor localization techniqu
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 09:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
左权县| 平武县| 扶绥县| 荥经县| 兴仁县| 巴里| 龙南县| 马公市| 东阳市| 防城港市| 年辖:市辖区| 镇康县| 康平县| 芮城县| 崇文区| 德州市| 呼伦贝尔市| 彭州市| 新竹县| 麻江县| 甘南县| 台中市| 郁南县| 宁城县| 峨眉山市| 大田县| 金阳县| 广宁县| 新和县| 宁海县| 长顺县| 长丰县| 桃源县| 亚东县| 彩票| 涿州市| 武汉市| 砚山县| 洛南县| 巴彦淖尔市| 休宁县|