找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning for Indoor Localization and Navigation; Saideep Tiku,Sudeep Pasricha Book 2023 The Editor(s) (if applicable) and The Auth

[復(fù)制鏈接]
樓主: 富裕
11#
發(fā)表于 2025-3-23 10:38:08 | 只看該作者
Overview of Approaches for Device Heterogeneity Management During Indoor Localizationd positioning technology, has attracted extensive attention. In the process of localization, the difference in RSS caused by heterogeneity between different devices cannot be ignored. It leads to the degradation of positioning accuracy. A comprehensive overview of device heterogeneity management met
12#
發(fā)表于 2025-3-23 15:39:42 | 只看該作者
Deep Learning for Resilience to Device Heterogeneity in Cellular-Based Localizationre suitable for providing such ubiquitous services due to their widespread availability. One of the main barriers to accuracy is a large number of models of cell phones, which have variations of the measured received signal strength (RSSI), even at the same location and time. This chapter discusses
13#
發(fā)表于 2025-3-23 19:53:01 | 只看該作者
14#
發(fā)表于 2025-3-23 23:43:40 | 只看該作者
Smartphone Invariant Indoor Localization Using Multi-head Attention Neural Network However, a few critical challenges have prevented the widespread proliferation of this technology in the public domain. One such critical challenge is device heterogeneity, i.e., the variation in the RSSI signal characteristics captured across different smartphone devices. In the real world, the sm
15#
發(fā)表于 2025-3-24 04:18:49 | 只看該作者
Heterogeneous Device Resilient Indoor Localization Using Vision Transformer Neural Networksgs to localize users with smartphones. Unfortunately, it has been demonstrated that the heterogeneity of wireless transceivers among various cellphones used by consumers reduces the accuracy and dependability of localization algorithms. In this chapter, we propose a novel framework based on vision t
16#
發(fā)表于 2025-3-24 08:26:23 | 只看該作者
17#
發(fā)表于 2025-3-24 11:40:30 | 只看該作者
18#
發(fā)表于 2025-3-24 16:58:53 | 只看該作者
19#
發(fā)表于 2025-3-24 21:57:08 | 只看該作者
Heterogeneous Device Resilient Indoor Localization Using Vision Transformer Neural Networks smartphone heterogeneity while improving localization accuracy from 41% to 68% over the best-known prior works. We also demonstrate the generalizability of our approach and propose a data augmentation technique that can be integrated into most deep learning-based localization frameworks to improve accuracy.
20#
發(fā)表于 2025-3-24 23:34:39 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 09:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
绥棱县| 滁州市| 百色市| 博爱县| 汤原县| 浏阳市| 肥西县| 澄江县| 彭泽县| 涿鹿县| 宁乡县| 石柱| 娄烦县| 闻喜县| 浑源县| 怀集县| 郧西县| 任丘市| 桑日县| 公安县| 新和县| 营山县| 大宁县| 西昌市| 永济市| 辽阳县| 竹北市| 仙桃市| 图木舒克市| 阿拉善左旗| 滦南县| 罗江县| 辽中县| 江北区| 托克逊县| 仁怀市| 什邡市| 兰州市| 平定县| 大悟县| 汕尾市|