找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning for Indoor Localization and Navigation; Saideep Tiku,Sudeep Pasricha Book 2023 The Editor(s) (if applicable) and The Auth

[復制鏈接]
樓主: 富裕
21#
發(fā)表于 2025-3-25 03:29:52 | 只看該作者
Exploiting Fingerprint Correlation for Fingerprint-Based Indoor Localization: A Deep Learning-Based ough fully exploiting the features of different fingerprints is to be explored as well. In this chapter, we investigate the location error of a fingerprint-based indoor localization system with the application of hybrid fingerprints. On this basis, we propose a hybrid fingerprints localization algorithm based on machine learning.
22#
發(fā)表于 2025-3-25 07:57:31 | 只看該作者
A Scalable Framework for Indoor Localization Using Convolutional Neural Networksnatures into images, to create a scalable fingerprinting framework based on convolutional neural networks (CNNs). Our proposed CNN-based indoor localization framework (.) is validated across several indoor locales and shows improvements over the best-known prior works, with an average localization error of <2 meters.
23#
發(fā)表于 2025-3-25 14:15:51 | 只看該作者
24#
發(fā)表于 2025-3-25 16:13:01 | 只看該作者
25#
發(fā)表于 2025-3-25 21:25:52 | 只看該作者
Smartphone Invariant Indoor Localization Using Multi-head Attention Neural Network neural network-based indoor localization framework that is resilient to device heterogeneity. An in-depth analysis of our proposed framework across a variety of indoor environments demonstrates up to 35% accuracy improvement compared to state-of-the-art indoor localization techniques.
26#
發(fā)表于 2025-3-26 03:06:49 | 只看該作者
Book 2023dense city centers, urban canyons, buildings and other covered structures, and subterranean facilities such as underground mines, where GPS signals are severely attenuated or totally blocked. As an alternative to GPS for the outdoors, indoor localization using machine learning is an emerging embedde
27#
發(fā)表于 2025-3-26 06:49:06 | 只看該作者
28#
發(fā)表于 2025-3-26 09:56:40 | 只看該作者
http://image.papertrans.cn/m/image/620623.jpg
29#
發(fā)表于 2025-3-26 12:45:53 | 只看該作者
https://doi.org/10.1007/978-3-031-26712-3Machine learning-based indoor localization; deep learning indoor localization; indoor positioning; indo
30#
發(fā)表于 2025-3-26 18:54:52 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 09:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
上林县| 金门县| 广丰县| 合水县| 象山县| 台东县| 江陵县| 西平县| 龙胜| 鹤山市| 滁州市| 通化县| 上高县| 阿图什市| 嘉禾县| 本溪市| 三台县| 霍邱县| 余庆县| 岢岚县| 贺州市| 格尔木市| 兰坪| 镇江市| 蓝田县| 阜阳市| 蒙山县| 天水市| 清镇市| 顺平县| 南靖县| 钦州市| 玉门市| 鄯善县| 郎溪县| 长垣县| 象州县| 囊谦县| 无极县| 三门县| 兴城市|