找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning for Indoor Localization and Navigation; Saideep Tiku,Sudeep Pasricha Book 2023 The Editor(s) (if applicable) and The Auth

[復(fù)制鏈接]
查看: 25434|回復(fù): 57
樓主
發(fā)表于 2025-3-21 18:07:05 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Machine Learning for Indoor Localization and Navigation
編輯Saideep Tiku,Sudeep Pasricha
視頻videohttp://file.papertrans.cn/621/620623/620623.mp4
概述Provides comprehensive coverage of the application of machine learning.Presents techniques to adapt and optimize machine learning models for fast, energy-efficient indoor localization.Covers design an
圖書封面Titlebook: Machine Learning for Indoor Localization and Navigation;  Saideep Tiku,Sudeep Pasricha Book 2023 The Editor(s) (if applicable) and The Auth
描述While GPS is the de-facto solution for outdoor positioning with a clear sky view, there is no prevailing technology for GPS-deprived areas, including dense city centers, urban canyons, buildings and other covered structures, and subterranean facilities such as underground mines, where GPS signals are severely attenuated or totally blocked. As an alternative to GPS for the outdoors, indoor localization using machine learning is an emerging embedded and Internet of Things (IoT) application domain that is poised to reinvent the way we navigate in various indoor environments. This book discusses advances in the applications of machine learning that enable the localization and navigation of humans, robots, and vehicles in GPS-deficient environments. The book explores key challenges in the domain, such as mobile device resource limitations, device heterogeneity, environmental uncertainties, wireless signal variations, and security vulnerabilities. Countering these challenges can improve theaccuracy, reliability, predictability, and energy-efficiency of indoor localization and navigation. The book identifies severalnovel energy-efficient, real-time, and robust indoor localization techniqu
出版日期Book 2023
關(guān)鍵詞Machine learning-based indoor localization; deep learning indoor localization; indoor positioning; indo
版次1
doihttps://doi.org/10.1007/978-3-031-26712-3
isbn_softcover978-3-031-26714-7
isbn_ebook978-3-031-26712-3
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Machine Learning for Indoor Localization and Navigation影響因子(影響力)




書目名稱Machine Learning for Indoor Localization and Navigation影響因子(影響力)學(xué)科排名




書目名稱Machine Learning for Indoor Localization and Navigation網(wǎng)絡(luò)公開度




書目名稱Machine Learning for Indoor Localization and Navigation網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Machine Learning for Indoor Localization and Navigation被引頻次




書目名稱Machine Learning for Indoor Localization and Navigation被引頻次學(xué)科排名




書目名稱Machine Learning for Indoor Localization and Navigation年度引用




書目名稱Machine Learning for Indoor Localization and Navigation年度引用學(xué)科排名




書目名稱Machine Learning for Indoor Localization and Navigation讀者反饋




書目名稱Machine Learning for Indoor Localization and Navigation讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:54:38 | 只看該作者
Smart Device-Based PDR Methods for Indoor Localizationon capability. Sensors embedded in these devices are relatively low-cost and convenient to carry. Consequently, leveraging the sensors embedded in smart devices has provided new opportunities for indoor PDR developments. In this chapter, we first introduce various types of smart devices and device-b
板凳
發(fā)表于 2025-3-22 04:28:44 | 只看該作者
Geometric Indoor Radiolocation: History, Trends and Open Issuesrties of the received signal, the so-called geometric radiolocation techniques. A brief reference to the localization history, actors, and architectures, along of a taxonomy of the different concepts of localization, introduces the chapter, before presenting a detailed discussion of the most common
地板
發(fā)表于 2025-3-22 07:57:42 | 只看該作者
Indoor Localization Using Trilateration and Location Fingerprinting Methodsl techniques to identify the location of the intersection point of three circles. A location “fingerprinting” algorithm is normally comprised of two stages. In the first stage, a positioning fingerprint database is established and the second stage is matching the fingerprint with the database. Kalma
5#
發(fā)表于 2025-3-22 10:51:54 | 只看該作者
6#
發(fā)表于 2025-3-22 16:19:23 | 只看該作者
7#
發(fā)表于 2025-3-22 19:48:13 | 只看該作者
A Scalable Framework for Indoor Localization Using Convolutional Neural Networkstals, and underground mines. Most prior works in the domain of indoor localization deliver inadequate localization accuracies without expensive infrastructure. Alternatively, methodologies employing inexpensive off-the-shelf devices that are ubiquitous in nature lack consistency in localization qual
8#
發(fā)表于 2025-3-22 21:13:11 | 只看該作者
9#
發(fā)表于 2025-3-23 03:47:46 | 只看該作者
Exploiting Fingerprint Correlation for Fingerprint-Based Indoor Localization: A Deep Learning-Based lying various fingerprints in improving localization accuracy still remains unknown. Moreover, how to design efficient indoor localization methods through fully exploiting the features of different fingerprints is to be explored as well. In this chapter, we investigate the location error of a finger
10#
發(fā)表于 2025-3-23 06:25:32 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 09:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安庆市| 淳安县| 香港 | 临夏县| 苍南县| 罗甸县| 江山市| 迭部县| 贡觉县| 屯门区| 桃园市| 横山县| 浑源县| 阿尔山市| 邓州市| 西宁市| 阳江市| 马鞍山市| 鹤岗市| 芒康县| 锦屏县| 翁源县| 镇坪县| 福鼎市| 静乐县| 和硕县| 墨脱县| 徐州市| 镇赉县| 嵩明县| 西乌珠穆沁旗| 英超| 玉环县| 唐河县| 洛宁县| 新兴县| 姚安县| 甘肃省| 保山市| 澄城县| 德格县|