找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning for Indoor Localization and Navigation; Saideep Tiku,Sudeep Pasricha Book 2023 The Editor(s) (if applicable) and The Auth

[復(fù)制鏈接]
樓主: 富裕
31#
發(fā)表于 2025-3-27 00:56:16 | 只看該作者
prove theaccuracy, reliability, predictability, and energy-efficiency of indoor localization and navigation. The book identifies severalnovel energy-efficient, real-time, and robust indoor localization techniqu978-3-031-26714-7978-3-031-26712-3
32#
發(fā)表于 2025-3-27 03:57:54 | 只看該作者
33#
發(fā)表于 2025-3-27 06:03:07 | 只看該作者
Facundo Lezama,Federico Larroca,Germán Capdehourat
34#
發(fā)表于 2025-3-27 11:34:33 | 只看該作者
35#
發(fā)表于 2025-3-27 15:09:40 | 只看該作者
Indoor Localization Using Trilateration and Location Fingerprinting Methodsthat in both the line-of-sight and non-line-of-sight experiments, the error is less than 0.5 meter within 3 meters in distance prediction by path loss models. The experimental results show that the trilateration localization algorithm is prone to error. The location fingerprinting-based method shows
36#
發(fā)表于 2025-3-27 19:10:37 | 只看該作者
Fusion of WiFi and IMU Using Swarm Optimization for Indoor Localizationter, we propose a new indoor localization system that integrates the inertial sensing and RSS fingerprinting via a modified Particle Swarm Optimization (PSO)-based algorithm. Different from traditional methods, our proposed method improves the accuracy by a new optimization process, in which the Ine
37#
發(fā)表于 2025-3-28 00:25:17 | 只看該作者
Learning Indoor Area Localization: The Trade-Off Between Expressiveness and Reliabilitycoarser location estimate (e.g., area/zone) with a higher accuracy. The size and shape of the predicted areas determine the model’s expressiveness (user gain) while influencing the degree to which the model provides a correct prediction (reliability). In this chapter we will introduce the area local
38#
發(fā)表于 2025-3-28 04:53:18 | 只看該作者
39#
發(fā)表于 2025-3-28 07:46:59 | 只看該作者
Overview of Approaches for Device Heterogeneity Management During Indoor Localizationnsformation, calibration-free function mapping method, and non-absolute fingerprint method, respectively. The principles of the implementation for these methods are presented in this chapter. Different evaluation metrics are utilized to participate in the comparison of these methods. The advantages
40#
發(fā)表于 2025-3-28 13:59:10 | 只看該作者
Book 2023reless signal variations, and security vulnerabilities. Countering these challenges can improve theaccuracy, reliability, predictability, and energy-efficiency of indoor localization and navigation. The book identifies severalnovel energy-efficient, real-time, and robust indoor localization techniqu
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 04:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
双峰县| 澄江县| 苗栗市| 清镇市| 奉化市| 阳西县| 惠安县| 鹰潭市| 泽州县| 四子王旗| 延边| 昭平县| 台南县| 呼图壁县| 临江市| 莫力| 汉源县| 浮梁县| 香河县| 易门县| 乌拉特后旗| 北碚区| 山阴县| 宁化县| 晋宁县| 临城县| 南川市| 和静县| 宁国市| 三原县| 宕昌县| 宜城市| 通江县| 德钦县| 昌平区| 安义县| 七台河市| 南雄市| 富顺县| 阳山县| 米易县|