找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning for Indoor Localization and Navigation; Saideep Tiku,Sudeep Pasricha Book 2023 The Editor(s) (if applicable) and The Auth

[復(fù)制鏈接]
查看: 25425|回復(fù): 57
樓主
發(fā)表于 2025-3-21 18:07:05 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Machine Learning for Indoor Localization and Navigation
編輯Saideep Tiku,Sudeep Pasricha
視頻videohttp://file.papertrans.cn/621/620623/620623.mp4
概述Provides comprehensive coverage of the application of machine learning.Presents techniques to adapt and optimize machine learning models for fast, energy-efficient indoor localization.Covers design an
圖書(shū)封面Titlebook: Machine Learning for Indoor Localization and Navigation;  Saideep Tiku,Sudeep Pasricha Book 2023 The Editor(s) (if applicable) and The Auth
描述While GPS is the de-facto solution for outdoor positioning with a clear sky view, there is no prevailing technology for GPS-deprived areas, including dense city centers, urban canyons, buildings and other covered structures, and subterranean facilities such as underground mines, where GPS signals are severely attenuated or totally blocked. As an alternative to GPS for the outdoors, indoor localization using machine learning is an emerging embedded and Internet of Things (IoT) application domain that is poised to reinvent the way we navigate in various indoor environments. This book discusses advances in the applications of machine learning that enable the localization and navigation of humans, robots, and vehicles in GPS-deficient environments. The book explores key challenges in the domain, such as mobile device resource limitations, device heterogeneity, environmental uncertainties, wireless signal variations, and security vulnerabilities. Countering these challenges can improve theaccuracy, reliability, predictability, and energy-efficiency of indoor localization and navigation. The book identifies severalnovel energy-efficient, real-time, and robust indoor localization techniqu
出版日期Book 2023
關(guān)鍵詞Machine learning-based indoor localization; deep learning indoor localization; indoor positioning; indo
版次1
doihttps://doi.org/10.1007/978-3-031-26712-3
isbn_softcover978-3-031-26714-7
isbn_ebook978-3-031-26712-3
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱(chēng)Machine Learning for Indoor Localization and Navigation影響因子(影響力)




書(shū)目名稱(chēng)Machine Learning for Indoor Localization and Navigation影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Machine Learning for Indoor Localization and Navigation網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Machine Learning for Indoor Localization and Navigation網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Machine Learning for Indoor Localization and Navigation被引頻次




書(shū)目名稱(chēng)Machine Learning for Indoor Localization and Navigation被引頻次學(xué)科排名




書(shū)目名稱(chēng)Machine Learning for Indoor Localization and Navigation年度引用




書(shū)目名稱(chēng)Machine Learning for Indoor Localization and Navigation年度引用學(xué)科排名




書(shū)目名稱(chēng)Machine Learning for Indoor Localization and Navigation讀者反饋




書(shū)目名稱(chēng)Machine Learning for Indoor Localization and Navigation讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:54:38 | 只看該作者
Smart Device-Based PDR Methods for Indoor Localizationon capability. Sensors embedded in these devices are relatively low-cost and convenient to carry. Consequently, leveraging the sensors embedded in smart devices has provided new opportunities for indoor PDR developments. In this chapter, we first introduce various types of smart devices and device-b
板凳
發(fā)表于 2025-3-22 04:28:44 | 只看該作者
Geometric Indoor Radiolocation: History, Trends and Open Issuesrties of the received signal, the so-called geometric radiolocation techniques. A brief reference to the localization history, actors, and architectures, along of a taxonomy of the different concepts of localization, introduces the chapter, before presenting a detailed discussion of the most common
地板
發(fā)表于 2025-3-22 07:57:42 | 只看該作者
Indoor Localization Using Trilateration and Location Fingerprinting Methodsl techniques to identify the location of the intersection point of three circles. A location “fingerprinting” algorithm is normally comprised of two stages. In the first stage, a positioning fingerprint database is established and the second stage is matching the fingerprint with the database. Kalma
5#
發(fā)表于 2025-3-22 10:51:54 | 只看該作者
6#
發(fā)表于 2025-3-22 16:19:23 | 只看該作者
7#
發(fā)表于 2025-3-22 19:48:13 | 只看該作者
A Scalable Framework for Indoor Localization Using Convolutional Neural Networkstals, and underground mines. Most prior works in the domain of indoor localization deliver inadequate localization accuracies without expensive infrastructure. Alternatively, methodologies employing inexpensive off-the-shelf devices that are ubiquitous in nature lack consistency in localization qual
8#
發(fā)表于 2025-3-22 21:13:11 | 只看該作者
9#
發(fā)表于 2025-3-23 03:47:46 | 只看該作者
Exploiting Fingerprint Correlation for Fingerprint-Based Indoor Localization: A Deep Learning-Based lying various fingerprints in improving localization accuracy still remains unknown. Moreover, how to design efficient indoor localization methods through fully exploiting the features of different fingerprints is to be explored as well. In this chapter, we investigate the location error of a finger
10#
發(fā)表于 2025-3-23 06:25:32 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-21 04:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
于田县| 两当县| 亳州市| 阿尔山市| 诏安县| 林口县| 昔阳县| 历史| 阿图什市| 苍梧县| 新野县| 清镇市| 大悟县| 镇坪县| 大安市| 昭通市| 建昌县| 万源市| 秭归县| 阿拉尔市| 扶余县| 松江区| 安庆市| 山东省| 本溪| 临夏县| 卓尼县| 油尖旺区| 体育| 永善县| 北碚区| 紫阳县| 鹿邑县| 青浦区| 芮城县| 舟曲县| 鱼台县| 汽车| 宜章县| 卢龙县| 塔城市|