找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Aspects of Functional Analysis; Israel Seminar (GAFA Bo‘a(chǎn)z Klartag,Emanuel Milman Book 2020 Springer Nature Switzerland AG 2020 A

[復(fù)制鏈接]
樓主: 輕舟
31#
發(fā)表于 2025-3-26 21:30:26 | 只看該作者
Moments of the Distance Between Independent Random Vectors,We derive various sharp bounds on moments of the distance between two independent random vectors taking values in a Banach space.
32#
發(fā)表于 2025-3-27 03:41:48 | 只看該作者
33#
發(fā)表于 2025-3-27 07:28:44 | 只看該作者
34#
發(fā)表于 2025-3-27 09:54:12 | 只看該作者
Polylog Dimensional Subspaces of ,,We show that a subspace of . of dimension . contains 2-isomorphic copies of . where . tends to infinity with . .. More precisely, for every .?>?0, we show that any subspace of . of dimension . contains a subspace of dimension . of distance at most 1?+?. from ..
35#
發(fā)表于 2025-3-27 14:51:02 | 只看該作者
On a Formula for the Volume of Polytopes,We carry out an elementary proof of a formula for the volume of polytopes, due to A. Esterov, from which it follows that the mixed volume of polytopes depends only on the product of their support functions.
36#
發(fā)表于 2025-3-27 19:58:45 | 只看該作者
Besonderheiten beim Kauf aus der Insolvenztion is close to a Gaussian, with the quantitative difference determined asymptotically by the Cheeger/Poincare/KLS constant. Here we propose a generalized CLT for marginals along random directions drawn from any isotropic log-concave distribution; namely, for ., . drawn independently from isotropic
37#
發(fā)表于 2025-3-28 00:12:58 | 只看該作者
38#
發(fā)表于 2025-3-28 02:47:57 | 只看該作者
Understanding XML Web Services,uncorrelated coordinates. Our bounds are exact up to multiplicative universal constants in the unconditional case for all . and in the isotropic case for .?≤?.???... We also derive two-sided estimates for expectations of sums of . largest moduli of coordinates for some classes of random vectors.
39#
發(fā)表于 2025-3-28 08:09:06 | 只看該作者
Asynchronous Distributed CheckpointingBobkov and Chistyakov (IEEE Trans Inform Theory 61(2):708–714, 2015) fails when the Rényi parameter .?∈?(0, 1), we show that random vectors with .-concave densities do satisfy such a Rényi entropy power inequality. Along the way, we establish the convergence in the Central Limit Theorem for Rényi en
40#
發(fā)表于 2025-3-28 13:19:56 | 只看該作者
Graph Theory and?Attitude Representations satisfies the small ball probability estimate . where .?>?0 may only depend on the sub-Gaussian moment. Although the estimate can be obtained as a combination of known results and techniques, it was not noticed in the literature before. As a key step of the proof, we apply estimates for the singula
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 11:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鹰潭市| 永年县| 遂宁市| 澎湖县| 上林县| 方城县| 永和县| 峨山| 洱源县| 昌乐县| 正镶白旗| 临江市| 宁津县| 通州市| 靖西县| 铅山县| 沭阳县| 鄂伦春自治旗| 佛冈县| 博爱县| 辽阳市| 卢氏县| 垦利县| 南和县| 莆田市| 游戏| 尉氏县| 南溪县| 朝阳区| 莒南县| 安塞县| 巴马| 新宾| 张掖市| 通化市| 齐河县| 乌鲁木齐市| 廊坊市| 中江县| 五家渠市| 灌南县|