找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Aspects of Functional Analysis; Israel Seminar (GAFA Bo‘a(chǎn)z Klartag,Emanuel Milman Book 2020 Springer Nature Switzerland AG 2020 A

[復(fù)制鏈接]
樓主: 輕舟
41#
發(fā)表于 2025-3-28 15:01:22 | 只看該作者
Keitarou Naruse,Yukinori Kakazuquence of intrinsic volumes. The main result states that the intrinsic volume sequence concentrates sharply around a specific index, called the central intrinsic volume. Furthermore, among all convex bodies whose central intrinsic volume is fixed, an appropriately scaled cube has the intrinsic volum
42#
發(fā)表于 2025-3-28 18:54:28 | 只看該作者
43#
發(fā)表于 2025-3-28 23:50:34 | 只看該作者
44#
發(fā)表于 2025-3-29 06:12:43 | 只看該作者
Mika Vainio,Pekka Appelqvist,Aarne Halmeconvex bodies of the form “1∕.”. The map .?.. sending a body to its reciprocal is a duality on the class of reciprocal bodies, and we study its properties..To connect this new map with the classic polarity we use another construction, associating to each convex body . a star body which we call its f
45#
發(fā)表于 2025-3-29 08:47:00 | 只看該作者
Distributed Autonomous Robotic Systems 8l ., .?∈{1, …, .} and small enough .?=?.(..), where .?>?0 is a universal constant, it must be the case that .?≥?2.. This stands in contrast to the metric theory of commutative .. spaces, as it is known that for any .?≥?1, any . points in .. embed exactly in . for .?=?.(.???1)∕2..Our proof is based o
46#
發(fā)表于 2025-3-29 12:38:18 | 只看該作者
https://doi.org/10.1007/978-3-030-39536-0 of the convex sets grows with the number of birational operations. In the case of complex surfaces we explain how to associate a linear program to certain sequences of blow-ups and how to reduce verifying the asymptotic log positivity to checking feasibility of the program.
47#
發(fā)表于 2025-3-29 18:00:16 | 只看該作者
48#
發(fā)表于 2025-3-29 23:24:57 | 只看該作者
49#
發(fā)表于 2025-3-30 00:59:41 | 只看該作者
50#
發(fā)表于 2025-3-30 06:52:41 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 16:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
辰溪县| 宁陕县| 奉新县| 资源县| 花垣县| 阳泉市| 涿州市| 革吉县| 吉安市| 阿鲁科尔沁旗| 定州市| 池州市| 三亚市| 静宁县| 濉溪县| 龙岩市| 南澳县| 光泽县| 乌鲁木齐市| 分宜县| 海阳市| 铁力市| 桦甸市| 林西县| 澄城县| 泌阳县| 上蔡县| 祁门县| 西青区| 自治县| 响水县| 景宁| 佛冈县| 临颍县| 乌拉特中旗| 石家庄市| 陆良县| 海伦市| 德兴市| 弥勒县| 姚安县|