找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Aspects of Functional Analysis; Israel Seminar (GAFA Bo‘a(chǎn)z Klartag,Emanuel Milman Book 2020 Springer Nature Switzerland AG 2020 A

[復(fù)制鏈接]
樓主: 輕舟
21#
發(fā)表于 2025-3-25 06:25:54 | 只看該作者
A Generalized Central Limit Conjecture for Convex Bodies,t (up to a small factor) to the KLS conjecture. Any polynomial improvement in the current KLS bound of .. in . implies the generalized CLT, and vice versa. This tight connection suggests that the generalized CLT might provide insight into basic open questions in asymptotic convex geometry.
22#
發(fā)表于 2025-3-25 07:51:04 | 只看該作者
,Further Investigations of Rényi Entropy Power Inequalities and an Entropic Characterization of s-Corated result of Barron (Ann Probab 14:336–342, 1986). Additionally, we give an entropic characterization of the class of .-concave densities, which extends a classical result of Cover and Zhang (IEEE Trans Inform Theory 40(4):1244–1246, 1994).
23#
發(fā)表于 2025-3-25 13:38:31 | 只看該作者
24#
發(fā)表于 2025-3-25 18:52:07 | 只看該作者
25#
發(fā)表于 2025-3-25 22:09:30 | 只看該作者
Small Ball Probability for the Condition Number of Random Matrices,mbination of known results and techniques, it was not noticed in the literature before. As a key step of the proof, we apply estimates for the singular values of ., . obtained (under some additional assumptions) by Nguyen.
26#
發(fā)表于 2025-3-26 03:35:49 | 只看該作者
27#
發(fā)表于 2025-3-26 07:46:57 | 只看該作者
Distributed Autonomous Robotic System 6A classical theorem of Alon and Milman states that any . dimensional centrally symmetric convex body has a projection of dimension . which is either close to the .-dimensional Euclidean ball or to the .-dimensional cross-polytope. We extended this result to non-symmetric convex bodies.
28#
發(fā)表于 2025-3-26 09:01:04 | 只看該作者
29#
發(fā)表于 2025-3-26 14:37:45 | 只看該作者
30#
發(fā)表于 2025-3-26 19:00:50 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 11:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
上杭县| 邻水| 濮阳市| 锦屏县| 兰州市| 华安县| 土默特右旗| 阜新市| 平邑县| 满洲里市| 罗甸县| 黄平县| 廊坊市| 天长市| 五台县| 九龙坡区| 磴口县| 宁南县| 山东省| 留坝县| 双江| 清苑县| 星子县| 海淀区| 台南市| 土默特左旗| 襄城县| 伊通| 旺苍县| 收藏| 洱源县| 汕头市| 五原县| 江永县| 岑巩县| 临洮县| 鸡西市| 洛宁县| 鹤山市| 平阴县| 宝应县|