找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Aspects of Functional Analysis; Israel Seminar (GAFA Bo‘a(chǎn)z Klartag,Emanuel Milman Book 2020 Springer Nature Switzerland AG 2020 A

[復(fù)制鏈接]
查看: 32442|回復(fù): 56
樓主
發(fā)表于 2025-3-21 17:53:33 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Geometric Aspects of Functional Analysis
副標(biāo)題Israel Seminar (GAFA
編輯Bo‘a(chǎn)z Klartag,Emanuel Milman
視頻videohttp://file.papertrans.cn/384/383472/383472.mp4
概述Features a unique mixture of papers on convex geometry and high-dimensional analysis.Describes state-of-the-art progress in asymptotic geometric analysis.Written from an interdisciplinary perspective,
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: Geometric Aspects of Functional Analysis; Israel Seminar (GAFA Bo‘a(chǎn)z Klartag,Emanuel Milman Book 2020 Springer Nature Switzerland AG 2020 A
描述Continuing the theme of the previous volumes, these seminar notes reflect general trends in the study of Geometric Aspects of Functional Analysis, understood in a broad sense. Two classical topics represented are the Concentration of Measure Phenomenon in the Local Theory of Banach Spaces, which has recently had triumphs in Random Matrix Theory, and the Central Limit Theorem, one of the earliest examples of regularity and order in high dimensions. Central to the text is the study of the Poincaré and log-Sobolev functional inequalities, their reverses, and other inequalities, in which a crucial role is often played by convexity assumptions such as Log-Concavity. The concept and properties of Entropy form an important subject, with Bourgain‘s slicing problem and its variants drawing much attention. Constructions related to Convexity Theory are proposed and revisited, as well as inequalities that go beyond the Brunn–Minkowski theory. One of the major current research directions addressedis the identification of lower-dimensional structures with remarkable properties in rather arbitrary high-dimensional objects. In addition to functional analytic results, connections to Computer Scienc
出版日期Book 2020
關(guān)鍵詞Asymptotic Geometric Analysis; Convex Geometry; Functional Analysis; Functional Inequalities; Geometric
版次1
doihttps://doi.org/10.1007/978-3-030-46762-3
isbn_softcover978-3-030-46761-6
isbn_ebook978-3-030-46762-3Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書目名稱Geometric Aspects of Functional Analysis影響因子(影響力)




書目名稱Geometric Aspects of Functional Analysis影響因子(影響力)學(xué)科排名




書目名稱Geometric Aspects of Functional Analysis網(wǎng)絡(luò)公開度




書目名稱Geometric Aspects of Functional Analysis網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Geometric Aspects of Functional Analysis被引頻次




書目名稱Geometric Aspects of Functional Analysis被引頻次學(xué)科排名




書目名稱Geometric Aspects of Functional Analysis年度引用




書目名稱Geometric Aspects of Functional Analysis年度引用學(xué)科排名




書目名稱Geometric Aspects of Functional Analysis讀者反饋




書目名稱Geometric Aspects of Functional Analysis讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

1票 100.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:18:09 | 只看該作者
,The Lower Bound for Koldobsky’s Slicing Inequality via Random Rounding,and all . . Our bound is optimal, up to the value of the universal constant. It improves slightly upon the results of the first named author and Koldobsky, which included a doubly-logarithmic error. The proof is based on an efficient way of discretizing the unit sphere.
板凳
發(fā)表于 2025-3-22 04:16:13 | 只看該作者
Two-Sided Estimates for Order Statistics of Log-Concave Random Vectors,uncorrelated coordinates. Our bounds are exact up to multiplicative universal constants in the unconditional case for all . and in the isotropic case for .?≤?.???... We also derive two-sided estimates for expectations of sums of . largest moduli of coordinates for some classes of random vectors.
地板
發(fā)表于 2025-3-22 05:38:25 | 只看該作者
,Further Investigations of Rényi Entropy Power Inequalities and an Entropic Characterization of s-CoBobkov and Chistyakov (IEEE Trans Inform Theory 61(2):708–714, 2015) fails when the Rényi parameter .?∈?(0, 1), we show that random vectors with .-concave densities do satisfy such a Rényi entropy power inequality. Along the way, we establish the convergence in the Central Limit Theorem for Rényi en
5#
發(fā)表于 2025-3-22 11:49:36 | 只看該作者
6#
發(fā)表于 2025-3-22 15:52:15 | 只看該作者
Concentration of the Intrinsic Volumes of a Convex Body,quence of intrinsic volumes. The main result states that the intrinsic volume sequence concentrates sharply around a specific index, called the central intrinsic volume. Furthermore, among all convex bodies whose central intrinsic volume is fixed, an appropriately scaled cube has the intrinsic volum
7#
發(fā)表于 2025-3-22 17:48:27 | 只看該作者
Two Remarks on Generalized Entropy Power Inequalities,nicity and entropy comparison of weighted sums of independent identically distributed log-concave random variables. We also present a complex analogue of a recent dependent entropy power inequality of Hao and Jog, and give a very simple proof.
8#
發(fā)表于 2025-3-23 00:56:19 | 只看該作者
On the Geometry of Random Polytopes,ric random variable that has variance 1, let Γ?=?(..) be an .?×?. random matrix whose entries are independent copies of ., and set .., …, .. to be the rows of Γ. Then under minimal assumptions on . and as long as .?≥?.., with high probability
9#
發(fā)表于 2025-3-23 05:06:26 | 只看該作者
10#
發(fā)表于 2025-3-23 08:42:57 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 11:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
明光市| 比如县| 毕节市| 万山特区| 同江市| 呼伦贝尔市| 利川市| 若尔盖县| 大足县| 武清区| 丹东市| 双流县| 盘山县| 台中县| 朝阳市| 长沙县| 宁城县| 玛沁县| 万州区| 梁河县| 湾仔区| 绵阳市| 闻喜县| 福贡县| 交城县| 崇仁县| 中西区| 长泰县| 石景山区| 申扎县| 女性| 南溪县| 通渭县| 汶上县| 木里| 梁山县| 云浮市| 台北市| 吉安县| 玉林市| 双桥区|