找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

123456
返回列表
打印 上一主題 下一主題

Titlebook: Geometric Aspects of Functional Analysis; Israel Seminar (GAFA Bo‘a(chǎn)z Klartag,Emanuel Milman Book 2020 Springer Nature Switzerland AG 2020 A

[復(fù)制鏈接]
樓主: 輕舟
51#
發(fā)表于 2025-3-30 09:15:51 | 只看該作者
Additional Remoting Techniques,and all . . Our bound is optimal, up to the value of the universal constant. It improves slightly upon the results of the first named author and Koldobsky, which included a doubly-logarithmic error. The proof is based on an efficient way of discretizing the unit sphere.
52#
發(fā)表于 2025-3-30 12:25:17 | 只看該作者
53#
發(fā)表于 2025-3-30 19:32:04 | 只看該作者
Keitarou Naruse,Yukinori Kakazuquence of intrinsic volumes. The main result states that the intrinsic volume sequence concentrates sharply around a specific index, called the central intrinsic volume. Furthermore, among all convex bodies whose central intrinsic volume is fixed, an appropriately scaled cube has the intrinsic volume sequence with maximum entropy.
54#
發(fā)表于 2025-3-30 21:23:14 | 只看該作者
Distributed Autonomous Robotic Systems 2nicity and entropy comparison of weighted sums of independent identically distributed log-concave random variables. We also present a complex analogue of a recent dependent entropy power inequality of Hao and Jog, and give a very simple proof.
55#
發(fā)表于 2025-3-31 03:05:28 | 只看該作者
Experiment of Self-repairing Modular Machineric random variable that has variance 1, let Γ?=?(..) be an .?×?. random matrix whose entries are independent copies of ., and set .., …, .. to be the rows of Γ. Then under minimal assumptions on . and as long as .?≥?.., with high probability
56#
發(fā)表于 2025-3-31 06:41:46 | 只看該作者
57#
發(fā)表于 2025-3-31 11:37:03 | 只看該作者
123456
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 11:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
尉犁县| 海晏县| 喀什市| 九寨沟县| 镇远县| 嘉义县| 永福县| 金塔县| 邹平县| 嘉义市| 包头市| 微山县| 锡林郭勒盟| 丹棱县| 溆浦县| 灵寿县| 岑溪市| 托里县| 宝鸡市| 仙游县| 泰和县| 彰化县| 义乌市| 遵义县| 宣城市| 海丰县| 偃师市| 游戏| 光山县| 元朗区| 丹东市| 郧西县| 潍坊市| 西畴县| 鄂温| 鄂托克前旗| 华蓥市| 彭水| 大名县| 互助| 独山县|