找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Effective Kan Fibrations in Simplicial Sets; Benno van den Berg,Eric Faber Book 2022 The Editor(s) (if applicable) and The Author(s), unde

[復(fù)制鏈接]
樓主: 有靈感
31#
發(fā)表于 2025-3-26 22:46:30 | 只看該作者
An Algebraic Weak Factorisation System from a Dominance factorisation system will be shown to be the class of . defined by the dominance, while the right class (algebras) is called the class of .. Proposition . can also be found in Bourke and Garner [.]. The rest of the chapter studies the (double) category of effective cofibrations a bit more closely a
32#
發(fā)表于 2025-3-27 02:54:03 | 只看該作者
33#
發(fā)表于 2025-3-27 07:58:01 | 只看該作者
34#
發(fā)表于 2025-3-27 12:14:02 | 只看該作者
Mould Squares and Effective Fibrationsy ingredient in this definition is the notion of a specific morphism between hyperdeformation retracts, called a .. After defining mould squares, effective fibrations are defined as arrows equipped with a right-lifting property with respect to a triple category of hyperdeformation retracts and mould
35#
發(fā)表于 2025-3-27 16:39:28 | 只看該作者
36#
發(fā)表于 2025-3-27 19:38:00 | 只看該作者
Effective Trivial Kan Fibrations in Simplicial Setsn which the effective cofibrations are the left maps. The right maps in this AWFS will be called the effective trivial Kan fibrations. We show that this class of effective trivial Kan fibrations is cofibrantly generated by a small double category, local and coincides with the usual class of trivial
37#
發(fā)表于 2025-3-28 00:15:12 | 只看該作者
Hyperdeformation Retracts in Simplicial Setsus that we will then obtain an AWFS of hyperdeformation retracts and naive Kan fibrations. We show that in the category of simplicial sets the naive Kan fibration are cofibrantly generated by a small double category and are a local notion of fibred structure.
38#
發(fā)表于 2025-3-28 04:53:26 | 只看該作者
0075-8434 hese new results solve an open problem in homotopy type theory and provide the first step toward giving a constructive account of Voevodsky’s model of univalent type theory in simplicial sets.978-3-031-18899-2978-3-031-18900-5Series ISSN 0075-8434 Series E-ISSN 1617-9692
39#
發(fā)表于 2025-3-28 07:15:38 | 只看該作者
40#
發(fā)表于 2025-3-28 10:52:50 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 02:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
兰坪| 商城县| 连城县| 资溪县| 东港市| 华安县| 揭阳市| 华宁县| 璧山县| 临湘市| 抚远县| 荣昌县| 固原市| 蓬莱市| 云和县| 青铜峡市| 江门市| 西丰县| 涪陵区| 高平市| 绥芬河市| 卓尼县| 互助| 南乐县| 石景山区| 登封市| 白城市| 开化县| 太白县| 辽阳市| 正蓝旗| 托里县| 常州市| 渑池县| 炉霍县| 元阳县| 东宁县| 霍州市| 九江市| 临泉县| 营口市|