找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Effective Kan Fibrations in Simplicial Sets; Benno van den Berg,Eric Faber Book 2022 The Editor(s) (if applicable) and The Author(s), unde

[復(fù)制鏈接]
查看: 30959|回復(fù): 50
樓主
發(fā)表于 2025-3-21 17:55:05 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Effective Kan Fibrations in Simplicial Sets
編輯Benno van den Berg,Eric Faber
視頻videohttp://file.papertrans.cn/303/302776/302776.mp4
概述Contributes to the emerging area of homotopy type theory.Provides new effective foundations for simplicial homotopy theory.Light on prerequisites (only basic category theory is required)
叢書(shū)名稱Lecture Notes in Mathematics
圖書(shū)封面Titlebook: Effective Kan Fibrations in Simplicial Sets;  Benno van den Berg,Eric Faber Book 2022 The Editor(s) (if applicable) and The Author(s), unde
描述This book introduces the notion of an effective Kan fibration, a new mathematical structure which can be used to study simplicial homotopy theory. The main motivation is to make simplicial homotopy theory suitable for homotopy type theory. Effective Kan fibrations are maps of simplicial sets equipped with a structured collection of chosen lifts that satisfy certain non-trivial properties. Here it is revealed that fundamental properties of ordinary Kan fibrations can be extended to explicit constructions on effective Kan fibrations. In particular, a constructive (explicit) proof is given that effective Kan fibrations are stable under push forward, or fibred exponentials. Further, it is shown that effective Kan fibrations are local, or completely determined by their fibres above representables, and the maps which can be equipped with the structure of an effective Kan fibration are precisely the ordinary Kan fibrations. Hence implicitly, both notions still describe the same homotopy theory. These new results solve an open problem in homotopy type theory and provide the first step toward giving a constructive account of Voevodsky’s model of univalent type theory in simplicial sets.
出版日期Book 2022
關(guān)鍵詞Simplicial Sets; Homotopy Theory; Constructive Mathematics; Homotopy Type Theory; Kan Complexes
版次1
doihttps://doi.org/10.1007/978-3-031-18900-5
isbn_softcover978-3-031-18899-2
isbn_ebook978-3-031-18900-5Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱Effective Kan Fibrations in Simplicial Sets影響因子(影響力)




書(shū)目名稱Effective Kan Fibrations in Simplicial Sets影響因子(影響力)學(xué)科排名




書(shū)目名稱Effective Kan Fibrations in Simplicial Sets網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Effective Kan Fibrations in Simplicial Sets網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Effective Kan Fibrations in Simplicial Sets被引頻次




書(shū)目名稱Effective Kan Fibrations in Simplicial Sets被引頻次學(xué)科排名




書(shū)目名稱Effective Kan Fibrations in Simplicial Sets年度引用




書(shū)目名稱Effective Kan Fibrations in Simplicial Sets年度引用學(xué)科排名




書(shū)目名稱Effective Kan Fibrations in Simplicial Sets讀者反饋




書(shū)目名稱Effective Kan Fibrations in Simplicial Sets讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:19:42 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:08:01 | 只看該作者
地板
發(fā)表于 2025-3-22 06:32:27 | 只看該作者
5#
發(fā)表于 2025-3-22 11:27:41 | 只看該作者
6#
發(fā)表于 2025-3-22 16:09:24 | 只看該作者
7#
發(fā)表于 2025-3-22 17:09:34 | 只看該作者
8#
發(fā)表于 2025-3-22 21:17:03 | 只看該作者
https://doi.org/10.1007/978-3-662-41254-1In this chapter we embark on the study of the effective Kan fibrations in simplicial sets defined using the dominance and symmetric Moore structure on simplicial sets that we established in the previous chapters. The main result of this chapter is that these effective Kan fibrations are cofibrantly generated by a small triple category.
9#
發(fā)表于 2025-3-23 04:29:22 | 只看該作者
Als das Digitale noch Hardware war,In this chapter we show that effective Kan fibration form a local notion of fibred structure. In addition we show that they coincide the usual Kan fibrations if we work in a classical metatheory.
10#
發(fā)表于 2025-3-23 08:15:02 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 22:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
盐山县| 长武县| 赞皇县| 南丰县| 湟源县| 论坛| 洛川县| 厦门市| 饶阳县| 白水县| 高台县| 衡南县| 屏边| 苏尼特右旗| 渝中区| 兴海县| 海南省| 拉萨市| 苍山县| 浙江省| 东乡| 邹平县| 共和县| 社旗县| 邓州市| 永新县| 锡林浩特市| 黄梅县| 五家渠市| 运城市| 嵊州市| 儋州市| 杭锦旗| 斗六市| 白水县| 吴桥县| 聂荣县| 凤台县| 博兴县| 海林市| 凤阳县|