找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Effective Kan Fibrations in Simplicial Sets; Benno van den Berg,Eric Faber Book 2022 The Editor(s) (if applicable) and The Author(s), unde

[復(fù)制鏈接]
查看: 30960|回復(fù): 50
樓主
發(fā)表于 2025-3-21 17:55:05 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Effective Kan Fibrations in Simplicial Sets
編輯Benno van den Berg,Eric Faber
視頻videohttp://file.papertrans.cn/303/302776/302776.mp4
概述Contributes to the emerging area of homotopy type theory.Provides new effective foundations for simplicial homotopy theory.Light on prerequisites (only basic category theory is required)
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: Effective Kan Fibrations in Simplicial Sets;  Benno van den Berg,Eric Faber Book 2022 The Editor(s) (if applicable) and The Author(s), unde
描述This book introduces the notion of an effective Kan fibration, a new mathematical structure which can be used to study simplicial homotopy theory. The main motivation is to make simplicial homotopy theory suitable for homotopy type theory. Effective Kan fibrations are maps of simplicial sets equipped with a structured collection of chosen lifts that satisfy certain non-trivial properties. Here it is revealed that fundamental properties of ordinary Kan fibrations can be extended to explicit constructions on effective Kan fibrations. In particular, a constructive (explicit) proof is given that effective Kan fibrations are stable under push forward, or fibred exponentials. Further, it is shown that effective Kan fibrations are local, or completely determined by their fibres above representables, and the maps which can be equipped with the structure of an effective Kan fibration are precisely the ordinary Kan fibrations. Hence implicitly, both notions still describe the same homotopy theory. These new results solve an open problem in homotopy type theory and provide the first step toward giving a constructive account of Voevodsky’s model of univalent type theory in simplicial sets.
出版日期Book 2022
關(guān)鍵詞Simplicial Sets; Homotopy Theory; Constructive Mathematics; Homotopy Type Theory; Kan Complexes
版次1
doihttps://doi.org/10.1007/978-3-031-18900-5
isbn_softcover978-3-031-18899-2
isbn_ebook978-3-031-18900-5Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Effective Kan Fibrations in Simplicial Sets影響因子(影響力)




書目名稱Effective Kan Fibrations in Simplicial Sets影響因子(影響力)學(xué)科排名




書目名稱Effective Kan Fibrations in Simplicial Sets網(wǎng)絡(luò)公開度




書目名稱Effective Kan Fibrations in Simplicial Sets網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Effective Kan Fibrations in Simplicial Sets被引頻次




書目名稱Effective Kan Fibrations in Simplicial Sets被引頻次學(xué)科排名




書目名稱Effective Kan Fibrations in Simplicial Sets年度引用




書目名稱Effective Kan Fibrations in Simplicial Sets年度引用學(xué)科排名




書目名稱Effective Kan Fibrations in Simplicial Sets讀者反饋




書目名稱Effective Kan Fibrations in Simplicial Sets讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:19:42 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:08:01 | 只看該作者
地板
發(fā)表于 2025-3-22 06:32:27 | 只看該作者
5#
發(fā)表于 2025-3-22 11:27:41 | 只看該作者
6#
發(fā)表于 2025-3-22 16:09:24 | 只看該作者
7#
發(fā)表于 2025-3-22 17:09:34 | 只看該作者
8#
發(fā)表于 2025-3-22 21:17:03 | 只看該作者
https://doi.org/10.1007/978-3-662-41254-1In this chapter we embark on the study of the effective Kan fibrations in simplicial sets defined using the dominance and symmetric Moore structure on simplicial sets that we established in the previous chapters. The main result of this chapter is that these effective Kan fibrations are cofibrantly generated by a small triple category.
9#
發(fā)表于 2025-3-23 04:29:22 | 只看該作者
Als das Digitale noch Hardware war,In this chapter we show that effective Kan fibration form a local notion of fibred structure. In addition we show that they coincide the usual Kan fibrations if we work in a classical metatheory.
10#
發(fā)表于 2025-3-23 08:15:02 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 00:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
荔波县| 河东区| 金川县| 额敏县| 海安县| 龙江县| 将乐县| 安多县| 睢宁县| 西畴县| 门头沟区| 广东省| 大关县| 鄯善县| 临沧市| 台山市| 商丘市| 阜阳市| 盐城市| 丰宁| 商丘市| 乌拉特后旗| 红河县| 固安县| 罗江县| 长春市| 吉水县| 峨眉山市| 类乌齐县| 诏安县| 永安市| 富阳市| 红安县| 神农架林区| 康定县| 尤溪县| 贵州省| 金溪县| 东乡族自治县| 建昌县| 额敏县|