找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Effective Kan Fibrations in Simplicial Sets; Benno van den Berg,Eric Faber Book 2022 The Editor(s) (if applicable) and The Author(s), unde

[復(fù)制鏈接]
樓主: 有靈感
21#
發(fā)表于 2025-3-25 06:42:08 | 只看該作者
22#
發(fā)表于 2025-3-25 09:16:47 | 只看該作者
23#
發(fā)表于 2025-3-25 14:55:46 | 只看該作者
https://doi.org/10.1007/978-3-476-03489-2y ingredient in this definition is the notion of a specific morphism between hyperdeformation retracts, called a .. After defining mould squares, effective fibrations are defined as arrows equipped with a right-lifting property with respect to a triple category of hyperdeformation retracts and mould
24#
發(fā)表于 2025-3-25 16:33:08 | 只看該作者
25#
發(fā)表于 2025-3-25 23:52:07 | 只看該作者
https://doi.org/10.1007/978-3-662-39800-5n which the effective cofibrations are the left maps. The right maps in this AWFS will be called the effective trivial Kan fibrations. We show that this class of effective trivial Kan fibrations is cofibrantly generated by a small double category, local and coincides with the usual class of trivial
26#
發(fā)表于 2025-3-26 04:07:55 | 只看該作者
https://doi.org/10.1007/978-3-642-51999-4us that we will then obtain an AWFS of hyperdeformation retracts and naive Kan fibrations. We show that in the category of simplicial sets the naive Kan fibration are cofibrantly generated by a small double category and are a local notion of fibred structure.
27#
發(fā)表于 2025-3-26 06:31:02 | 只看該作者
28#
發(fā)表于 2025-3-26 11:38:04 | 只看該作者
29#
發(fā)表于 2025-3-26 16:37:53 | 只看該作者
30#
發(fā)表于 2025-3-26 17:05:50 | 只看該作者
https://doi.org/10.1007/978-3-642-51999-4us that we will then obtain an AWFS of hyperdeformation retracts and naive Kan fibrations. We show that in the category of simplicial sets the naive Kan fibration are cofibrantly generated by a small double category and are a local notion of fibred structure.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 14:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安溪县| 招远市| 涞源县| 思南县| 兴义市| 新余市| 凌海市| 汉沽区| 昆明市| 富宁县| 广水市| 咸宁市| 龙江县| 杂多县| 三亚市| 含山县| 靖州| 贡嘎县| 惠东县| 泰州市| 兰坪| 井冈山市| 榕江县| 辉南县| 台江县| 应用必备| 永靖县| 茶陵县| 景德镇市| 舒兰市| 城步| 秭归县| 河间市| 项城市| 同仁县| 宜阳县| 嵩明县| 迭部县| 尚志市| 龙州县| 吐鲁番市|