找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Effective Kan Fibrations in Simplicial Sets; Benno van den Berg,Eric Faber Book 2022 The Editor(s) (if applicable) and The Author(s), unde

[復(fù)制鏈接]
樓主: 有靈感
41#
發(fā)表于 2025-3-28 16:52:18 | 只看該作者
https://doi.org/10.1007/978-3-658-17888-8ion . can also be found in Bourke and Garner [.]. The rest of the chapter studies the (double) category of effective cofibrations a bit more closely and in terms of (co)fibred structure. Throughout this chapter, . is a category satisfying the conditions stated at the beginning of Chap. ..
42#
發(fā)表于 2025-3-28 19:15:43 | 只看該作者
https://doi.org/10.1007/978-3-662-39800-5is class of effective trivial Kan fibrations is cofibrantly generated by a small double category, local and coincides with the usual class of trivial Kan fibrations if we work in a classical metatheory.
43#
發(fā)表于 2025-3-29 02:39:47 | 只看該作者
An Algebraic Weak Factorisation System from a Dominanceion . can also be found in Bourke and Garner [.]. The rest of the chapter studies the (double) category of effective cofibrations a bit more closely and in terms of (co)fibred structure. Throughout this chapter, . is a category satisfying the conditions stated at the beginning of Chap. ..
44#
發(fā)表于 2025-3-29 07:03:57 | 只看該作者
45#
發(fā)表于 2025-3-29 10:09:18 | 只看該作者
https://doi.org/10.1007/978-3-476-03489-2 squares. We show that effective fibrations are also naive fibrations. Further, we define a notion of effective trivial fibration with respect to a triple category and show that it coincides with the one defined in Chap. .. We show that effective trivial fibrations are also effective fibrations.
46#
發(fā)表于 2025-3-29 14:08:59 | 只看該作者
Mould Squares and Effective Fibrations squares. We show that effective fibrations are also naive fibrations. Further, we define a notion of effective trivial fibration with respect to a triple category and show that it coincides with the one defined in Chap. .. We show that effective trivial fibrations are also effective fibrations.
47#
發(fā)表于 2025-3-29 15:55:35 | 只看該作者
48#
發(fā)表于 2025-3-29 22:08:44 | 只看該作者
49#
發(fā)表于 2025-3-30 03:48:00 | 只看該作者
50#
發(fā)表于 2025-3-30 05:10:39 | 只看該作者
10樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 02:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
涞源县| 钟山县| 晴隆县| 南投市| 乌兰察布市| 鸡西市| 伊川县| 大同县| 连江县| 龙里县| 和静县| 青龙| 莆田市| 昌邑市| 开封市| 神农架林区| 双鸭山市| 钟祥市| 万州区| 遂昌县| 康平县| 民和| 东城区| 姚安县| 湛江市| 福州市| 赤峰市| 河北省| 五家渠市| 宾阳县| 昔阳县| 蒙自县| 淳安县| 平泉县| 吉水县| 泸水县| 鄯善县| 佛学| 莱州市| 博湖县| 申扎县|