找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Effective Kan Fibrations in Simplicial Sets; Benno van den Berg,Eric Faber Book 2022 The Editor(s) (if applicable) and The Author(s), unde

[復(fù)制鏈接]
樓主: 有靈感
21#
發(fā)表于 2025-3-25 06:42:08 | 只看該作者
22#
發(fā)表于 2025-3-25 09:16:47 | 只看該作者
23#
發(fā)表于 2025-3-25 14:55:46 | 只看該作者
https://doi.org/10.1007/978-3-476-03489-2y ingredient in this definition is the notion of a specific morphism between hyperdeformation retracts, called a .. After defining mould squares, effective fibrations are defined as arrows equipped with a right-lifting property with respect to a triple category of hyperdeformation retracts and mould
24#
發(fā)表于 2025-3-25 16:33:08 | 只看該作者
25#
發(fā)表于 2025-3-25 23:52:07 | 只看該作者
https://doi.org/10.1007/978-3-662-39800-5n which the effective cofibrations are the left maps. The right maps in this AWFS will be called the effective trivial Kan fibrations. We show that this class of effective trivial Kan fibrations is cofibrantly generated by a small double category, local and coincides with the usual class of trivial
26#
發(fā)表于 2025-3-26 04:07:55 | 只看該作者
https://doi.org/10.1007/978-3-642-51999-4us that we will then obtain an AWFS of hyperdeformation retracts and naive Kan fibrations. We show that in the category of simplicial sets the naive Kan fibration are cofibrantly generated by a small double category and are a local notion of fibred structure.
27#
發(fā)表于 2025-3-26 06:31:02 | 只看該作者
28#
發(fā)表于 2025-3-26 11:38:04 | 只看該作者
29#
發(fā)表于 2025-3-26 16:37:53 | 只看該作者
30#
發(fā)表于 2025-3-26 17:05:50 | 只看該作者
https://doi.org/10.1007/978-3-642-51999-4us that we will then obtain an AWFS of hyperdeformation retracts and naive Kan fibrations. We show that in the category of simplicial sets the naive Kan fibration are cofibrantly generated by a small double category and are a local notion of fibred structure.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 02:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永和县| 林州市| 云和县| 磐石市| 仪陇县| 田东县| 铜梁县| 晋城| 新兴县| 昌江| 禄丰县| 招远市| 松滋市| 什邡市| 盐亭县| 象山县| 南雄市| 遂平县| 淄博市| 灯塔市| 镇江市| 香港 | 平阴县| 上思县| 浮梁县| 松阳县| 东明县| 曲阳县| 垫江县| 堆龙德庆县| 宜州市| 罗江县| 武山县| 曲阜市| 渝北区| 临潭县| 霍州市| 三门县| 肥西县| 柏乡县| 铁岭县|