找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Cardinal Functions on Boolean Algebras; J. Donald Monk Book 1990 Springer Basel AG 1990 algebra.Boolean algebra.cardinal function.function

[復(fù)制鏈接]
樓主: bradycardia
11#
發(fā)表于 2025-3-23 10:31:19 | 只看該作者
Lectures in Mathematics. ETH Zürichhttp://image.papertrans.cn/c/image/221847.jpg
12#
發(fā)表于 2025-3-23 16:44:05 | 只看該作者
13#
發(fā)表于 2025-3-23 21:36:07 | 只看該作者
14#
發(fā)表于 2025-3-24 01:56:25 | 只看該作者
15#
發(fā)表于 2025-3-24 05:13:03 | 只看該作者
16#
發(fā)表于 2025-3-24 07:29:34 | 只看該作者
https://doi.org/10.1007/0-387-31609-4A BA . is said to satisfy the . if every disjoint subset of . has power < .. Thus for . non-limit, this is the same as saying that the cellularity of . is < .. Of most interest is the ..-chain condition, called ccc for short (countable chain condition). We shall return to it below.
17#
發(fā)表于 2025-3-24 11:52:11 | 只看該作者
https://doi.org/10.1007/0-387-31609-4We begin with some equivalents of this notion. A set . of non-zero elements of a BA . is said to be . provided that it satisfies the finite intersection property. And . is called . if .{0} is the union of . centered sets.
18#
發(fā)表于 2025-3-24 16:26:54 | 只看該作者
Undergraduate Texts in MathematicsRecall that Length . is the sup of cardinalities of subsets of . which are simply ordered by the Boolean ordering. For references see the beginning of section 2. The analysis of Length is similar to that for Depth; many of the proofs are similar, but there are some differences.
19#
發(fā)表于 2025-3-24 21:48:21 | 只看該作者
https://doi.org/10.1007/0-387-31609-4There is a lot of information about independence in Part I of the Handbook. An even more extensive account is in Monk [83].
20#
發(fā)表于 2025-3-25 01:06:09 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 20:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乌审旗| 南岸区| 建德市| 甘德县| 虞城县| 永德县| 柳江县| 铁岭市| 仲巴县| 潼关县| 定日县| 南宫市| 昔阳县| 柳州市| 裕民县| 县级市| 竹溪县| 科技| 唐山市| 黄冈市| 东台市| 南投市| 鄢陵县| 新绛县| 全州县| 华蓥市| 曲阳县| 高密市| 介休市| 开原市| 安远县| 云阳县| 三江| 朝阳县| 抚松县| 福清市| 九龙县| 拉萨市| 环江| 渝北区| 婺源县|