找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Cardinal Functions on Boolean Algebras; J. Donald Monk Book 1990 Springer Basel AG 1990 algebra.Boolean algebra.cardinal function.function

[復(fù)制鏈接]
樓主: bradycardia
11#
發(fā)表于 2025-3-23 10:31:19 | 只看該作者
Lectures in Mathematics. ETH Zürichhttp://image.papertrans.cn/c/image/221847.jpg
12#
發(fā)表于 2025-3-23 16:44:05 | 只看該作者
13#
發(fā)表于 2025-3-23 21:36:07 | 只看該作者
14#
發(fā)表于 2025-3-24 01:56:25 | 只看該作者
15#
發(fā)表于 2025-3-24 05:13:03 | 只看該作者
16#
發(fā)表于 2025-3-24 07:29:34 | 只看該作者
https://doi.org/10.1007/0-387-31609-4A BA . is said to satisfy the . if every disjoint subset of . has power < .. Thus for . non-limit, this is the same as saying that the cellularity of . is < .. Of most interest is the ..-chain condition, called ccc for short (countable chain condition). We shall return to it below.
17#
發(fā)表于 2025-3-24 11:52:11 | 只看該作者
https://doi.org/10.1007/0-387-31609-4We begin with some equivalents of this notion. A set . of non-zero elements of a BA . is said to be . provided that it satisfies the finite intersection property. And . is called . if .{0} is the union of . centered sets.
18#
發(fā)表于 2025-3-24 16:26:54 | 只看該作者
Undergraduate Texts in MathematicsRecall that Length . is the sup of cardinalities of subsets of . which are simply ordered by the Boolean ordering. For references see the beginning of section 2. The analysis of Length is similar to that for Depth; many of the proofs are similar, but there are some differences.
19#
發(fā)表于 2025-3-24 21:48:21 | 只看該作者
https://doi.org/10.1007/0-387-31609-4There is a lot of information about independence in Part I of the Handbook. An even more extensive account is in Monk [83].
20#
發(fā)表于 2025-3-25 01:06:09 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 20:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
会东县| 白城市| 南乐县| 苏尼特左旗| 彭州市| 平湖市| 金寨县| 灵石县| 彭山县| 关岭| 抚远县| 苍山县| 汉源县| 怀化市| 广东省| 京山县| 界首市| 大石桥市| 陈巴尔虎旗| 东乡县| 蒙城县| 改则县| 南溪县| 荆州市| 东辽县| 班戈县| 自治县| 泰顺县| 天等县| 化德县| 合山市| 镇沅| 济宁市| 蓝田县| 正定县| 滁州市| 高青县| 莱阳市| 南丰县| 逊克县| 阳泉市|