找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Cardinal Functions on Boolean Algebras; J. Donald Monk Book 1990 Springer Basel AG 1990 algebra.Boolean algebra.cardinal function.function

[復(fù)制鏈接]
樓主: bradycardia
21#
發(fā)表于 2025-3-25 07:13:27 | 只看該作者
https://doi.org/10.1007/978-1-4615-1239-4The following theorem gives some equivalent definitions of spread.
22#
發(fā)表于 2025-3-25 10:34:55 | 只看該作者
Application Background of Circle Integrals,We begin with some equivalent definitions. For one of them we need the following notion: a sequence (...) of distinct elements of a topological space . is . provided that for every . < . the set {.. : . < .} is open in {.. : . < .}.
23#
發(fā)表于 2025-3-25 13:50:25 | 只看該作者
Notes on the Ellipsoidal FunctionWe begin again with some equivalent definitions, which are similar to the case of hereditary Lindel?f degree. Recall from page 42 the definition of left-separated sequence.
24#
發(fā)表于 2025-3-25 16:40:46 | 只看該作者
25#
發(fā)表于 2025-3-26 00:00:54 | 只看該作者
Cellularity,A BA . is said to satisfy the . if every disjoint subset of . has power < .. Thus for . non-limit, this is the same as saying that the cellularity of . is < .. Of most interest is the ..-chain condition, called ccc for short (countable chain condition). We shall return to it below.
26#
發(fā)表于 2025-3-26 02:53:17 | 只看該作者
27#
發(fā)表于 2025-3-26 06:37:02 | 只看該作者
28#
發(fā)表于 2025-3-26 11:25:45 | 只看該作者
Independence,There is a lot of information about independence in Part I of the Handbook. An even more extensive account is in Monk [83].
29#
發(fā)表于 2025-3-26 14:32:50 | 只看該作者
30#
發(fā)表于 2025-3-26 19:38:41 | 只看該作者
Spread,The following theorem gives some equivalent definitions of spread.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 20:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
富源县| 称多县| 岳普湖县| 尼玛县| 深水埗区| 左云县| 桂平市| 宜黄县| 涞水县| 内黄县| 崇左市| 科尔| 花莲县| 无极县| 乌兰察布市| 沂南县| 郓城县| 章丘市| 高密市| 信丰县| 商河县| 成安县| 墨玉县| 美姑县| 南漳县| 静海县| 阿勒泰市| 福泉市| 安仁县| 利川市| 治多县| 天气| 普格县| 巴楚县| 绥化市| 岑巩县| 南投市| 蛟河市| 济阳县| 江津市| 金昌市|