找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Cardinal Functions on Boolean Algebras; J. Donald Monk Book 1990 Springer Basel AG 1990 algebra.Boolean algebra.cardinal function.function

[復(fù)制鏈接]
查看: 30843|回復(fù): 59
樓主
發(fā)表于 2025-3-21 19:16:31 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Cardinal Functions on Boolean Algebras
編輯J. Donald Monk
視頻videohttp://file.papertrans.cn/222/221847/221847.mp4
叢書(shū)名稱Lectures in Mathematics. ETH Zürich
圖書(shū)封面Titlebook: Cardinal Functions on Boolean Algebras;  J. Donald Monk Book 1990 Springer Basel AG 1990 algebra.Boolean algebra.cardinal function.function
出版日期Book 1990
關(guān)鍵詞algebra; Boolean algebra; cardinal function; function; functions
版次1
doihttps://doi.org/10.1007/978-3-0348-6381-0
isbn_softcover978-3-7643-2495-7
isbn_ebook978-3-0348-6381-0
copyrightSpringer Basel AG 1990
The information of publication is updating

書(shū)目名稱Cardinal Functions on Boolean Algebras影響因子(影響力)




書(shū)目名稱Cardinal Functions on Boolean Algebras影響因子(影響力)學(xué)科排名




書(shū)目名稱Cardinal Functions on Boolean Algebras網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Cardinal Functions on Boolean Algebras網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Cardinal Functions on Boolean Algebras被引頻次




書(shū)目名稱Cardinal Functions on Boolean Algebras被引頻次學(xué)科排名




書(shū)目名稱Cardinal Functions on Boolean Algebras年度引用




書(shū)目名稱Cardinal Functions on Boolean Algebras年度引用學(xué)科排名




書(shū)目名稱Cardinal Functions on Boolean Algebras讀者反饋




書(shū)目名稱Cardinal Functions on Boolean Algebras讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

1票 100.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:09:07 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:22:36 | 只看該作者
Cardinality,.. = 2. for A satisfying CSP. W. Just [88] has shown that it is consistent to have a BA . such that ω. ≤ Card.. = |.| < 2ω. Questions about Card. are connected to some problems about cofinality and related cardinal functions which will not be considered here; see van Douwen [89]. The cardinal function Card. is defined as follows:
地板
發(fā)表于 2025-3-22 05:46:15 | 只看該作者
Character,. ∈ . and ... = 0 for . ? .. Then . is the set of all.such that .. ≤ . for some cofinite subset . of .. So, it is clear that . ≤ .|. If . is a set of generators for . with |.| < |.|, then there is a . ∈ . such that . ? .. for infinitely many cofinite subsets . of .; this is clearly impossible.
5#
發(fā)表于 2025-3-22 10:20:51 | 只看該作者
6#
發(fā)表于 2025-3-22 15:08:58 | 只看該作者
7#
發(fā)表于 2025-3-22 17:35:17 | 只看該作者
https://doi.org/10.1007/978-981-99-7879-3of . such that . ? .. But it is a very elementary exercise to show that no ultrafilter is included in a finite union of other, different, ultrafilters. So, t. ≥ ., and hence t. ≥ . for every infinite BA ..
8#
發(fā)表于 2025-3-22 23:15:27 | 只看該作者
,-Weight, . with π . < π ., and if we take . = . and . = ./Fin, then π . = ω; while π . = 2. since A has a disjoint subset of size 2.. Turning to products, we have (math) for any system (.. : . ∈ .) of infinite BA’s. For, ≥ is clear; now suppose .. is a dense subset of .. for each . ∈ ..
9#
發(fā)表于 2025-3-23 03:51:30 | 只看該作者
10#
發(fā)表于 2025-3-23 07:29:28 | 只看該作者
Tightness,of . such that . ? .. But it is a very elementary exercise to show that no ultrafilter is included in a finite union of other, different, ultrafilters. So, t. ≥ ., and hence t. ≥ . for every infinite BA ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 18:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
广元市| 洛川县| 平利县| 五河县| 松滋市| 赤水市| 虎林市| 大渡口区| 施甸县| 宜城市| 林口县| 永靖县| 永嘉县| 兴安盟| 饶河县| 衡水市| 民丰县| 泰和县| 澎湖县| 江陵县| 潞西市| 逊克县| 南雄市| 乌鲁木齐县| 玉溪市| 乐平市| 白水县| 静安区| 马山县| 宁河县| 金门县| 小金县| 台中市| 临江市| 安福县| 忻州市| 前郭尔| 万全县| 屯门区| 称多县| 临武县|