找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Cardinal Functions on Boolean Algebras; J. Donald Monk Book 1990 Springer Basel AG 1990 algebra.Boolean algebra.cardinal function.function

[復(fù)制鏈接]
樓主: bradycardia
21#
發(fā)表于 2025-3-25 07:13:27 | 只看該作者
https://doi.org/10.1007/978-1-4615-1239-4The following theorem gives some equivalent definitions of spread.
22#
發(fā)表于 2025-3-25 10:34:55 | 只看該作者
Application Background of Circle Integrals,We begin with some equivalent definitions. For one of them we need the following notion: a sequence (...) of distinct elements of a topological space . is . provided that for every . < . the set {.. : . < .} is open in {.. : . < .}.
23#
發(fā)表于 2025-3-25 13:50:25 | 只看該作者
Notes on the Ellipsoidal FunctionWe begin again with some equivalent definitions, which are similar to the case of hereditary Lindel?f degree. Recall from page 42 the definition of left-separated sequence.
24#
發(fā)表于 2025-3-25 16:40:46 | 只看該作者
25#
發(fā)表于 2025-3-26 00:00:54 | 只看該作者
Cellularity,A BA . is said to satisfy the . if every disjoint subset of . has power < .. Thus for . non-limit, this is the same as saying that the cellularity of . is < .. Of most interest is the ..-chain condition, called ccc for short (countable chain condition). We shall return to it below.
26#
發(fā)表于 2025-3-26 02:53:17 | 只看該作者
27#
發(fā)表于 2025-3-26 06:37:02 | 只看該作者
28#
發(fā)表于 2025-3-26 11:25:45 | 只看該作者
Independence,There is a lot of information about independence in Part I of the Handbook. An even more extensive account is in Monk [83].
29#
發(fā)表于 2025-3-26 14:32:50 | 只看該作者
30#
發(fā)表于 2025-3-26 19:38:41 | 只看該作者
Spread,The following theorem gives some equivalent definitions of spread.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 22:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
赞皇县| 隆尧县| 汝阳县| 榆社县| 新化县| 噶尔县| 颍上县| 屯昌县| 汨罗市| 奉节县| 阳西县| 赣州市| 满洲里市| 沂水县| 抚远县| 固阳县| 大埔区| 浮山县| 闵行区| 安岳县| 武义县| 且末县| 清流县| 临泽县| 阿尔山市| 桃源县| 资源县| 图木舒克市| 双流县| 青海省| 开原市| 台州市| 谷城县| 平泉县| 舞阳县| 杭锦后旗| 吴桥县| 邢台市| 林甸县| 颍上县| 溧阳市|