找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Reinforcement Learning with Hybrid Quantum Approximation in the NISQ Context; Leonhard Kunczik Book 2022 The Editor(s) (if applicable) and

[復(fù)制鏈接]
查看: 50079|回復(fù): 47
樓主
發(fā)表于 2025-3-21 19:27:47 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Reinforcement Learning with Hybrid Quantum Approximation in the NISQ Context
編輯Leonhard Kunczik
視頻videohttp://file.papertrans.cn/826/825945/825945.mp4
圖書(shū)封面Titlebook: Reinforcement Learning with Hybrid Quantum Approximation in the NISQ Context;  Leonhard Kunczik Book 2022 The Editor(s) (if applicable) and
描述This book explores the combination of Reinforcement Learning and Quantum Computing in the light of complex attacker-defender scenarios. Reinforcement Learning has proven its capabilities in different challenging optimization problems and is now an established method in Operations Research. However, complex attacker-defender scenarios have several characteristics that challenge Reinforcement Learning algorithms, requiring enormous computational power to obtain the optimal solution.?.The upcoming field of Quantum Computing is a promising path for solving computationally complex problems. Therefore, this work explores a hybrid quantum approach to policy gradient methods in Reinforcement Learning. It proposes a novel quantum REINFORCE algorithm that enhances its classical counterpart by Quantum Variational Circuits. The new algorithm is compared to classical algorithms regarding the convergence speed and memory usage on several attacker-defender scenarios with increasing complexity. In addition, to study its applicability on today‘s NISQ hardware, the algorithm is evaluated on IBM‘s quantum computers, which is accompanied by an in-depth analysis of the advantages of Quantum Reinforceme
出版日期Book 2022
關(guān)鍵詞Quantum Machine Learning; Quantum Reinforcement Learning; Quanten Computing; Reinforcement Learning; Att
版次1
doihttps://doi.org/10.1007/978-3-658-37616-1
isbn_softcover978-3-658-37615-4
isbn_ebook978-3-658-37616-1
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Fachmedien Wies
The information of publication is updating

書(shū)目名稱(chēng)Reinforcement Learning with Hybrid Quantum Approximation in the NISQ Context影響因子(影響力)




書(shū)目名稱(chēng)Reinforcement Learning with Hybrid Quantum Approximation in the NISQ Context影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Reinforcement Learning with Hybrid Quantum Approximation in the NISQ Context網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Reinforcement Learning with Hybrid Quantum Approximation in the NISQ Context網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Reinforcement Learning with Hybrid Quantum Approximation in the NISQ Context被引頻次




書(shū)目名稱(chēng)Reinforcement Learning with Hybrid Quantum Approximation in the NISQ Context被引頻次學(xué)科排名




書(shū)目名稱(chēng)Reinforcement Learning with Hybrid Quantum Approximation in the NISQ Context年度引用




書(shū)目名稱(chēng)Reinforcement Learning with Hybrid Quantum Approximation in the NISQ Context年度引用學(xué)科排名




書(shū)目名稱(chēng)Reinforcement Learning with Hybrid Quantum Approximation in the NISQ Context讀者反饋




書(shū)目名稱(chēng)Reinforcement Learning with Hybrid Quantum Approximation in the NISQ Context讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:34:44 | 只看該作者
Applying Quantum REINFORCE to the Information Game,ring the results to the classical Q-learning and REINFORCE algorithms. The advantages of the new algorithm are derived and discussed. Additionally, details on the hyper-parameter optimization within the experiments are given.
板凳
發(fā)表于 2025-3-22 03:34:23 | 只看該作者
,Evaluating Quantum REINFORCE on IBM’s Quantum Hardware,To achieve this the algorithm is adapted to the hardware and the results are compared to the solution obtained with a quantum simulator. Based on the experiments the second research question is answered.
地板
發(fā)表于 2025-3-22 06:47:56 | 只看該作者
5#
發(fā)表于 2025-3-22 09:04:44 | 只看該作者
http://image.papertrans.cn/r/image/825945.jpg
6#
發(fā)表于 2025-3-22 14:52:09 | 只看該作者
7#
發(fā)表于 2025-3-22 18:43:46 | 只看該作者
8#
發(fā)表于 2025-3-23 01:18:24 | 只看該作者
,The Information Game—A special Attacker-Defender Scenario,This chapter introduces the Information Game, a scale-able attacker-defender scenario that is studied within this work.
9#
發(fā)表于 2025-3-23 04:27:48 | 只看該作者
10#
發(fā)表于 2025-3-23 09:24:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 13:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鄄城县| 怀远县| 海城市| 中超| 施甸县| 南涧| 中西区| 余干县| 延边| 连江县| 全南县| 大竹县| 舒城县| 海安县| 通州区| 高青县| 太谷县| 昌吉市| 海丰县| 洮南市| 晋城| 靖安县| 玉龙| 肃宁县| 恩平市| 三河市| 会理县| 山丹县| 阳新县| 东兰县| 奉新县| 肇庆市| 玉屏| 黄平县| 都匀市| 泊头市| 家居| 合阳县| 临泽县| 瓦房店市| 桐梓县|