找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Reinforcement Learning with Hybrid Quantum Approximation in the NISQ Context; Leonhard Kunczik Book 2022 The Editor(s) (if applicable) and

[復(fù)制鏈接]
樓主: BID
11#
發(fā)表于 2025-3-23 12:40:36 | 只看該作者
Approximation in Quantum Computing,This chapter focuses on function approximation in quantum computing and introduces quantum variational circuits as a quantum approximator. The idea of hybrid training, which combines classical machine learning algorithms with quantum variational circuits is explained, to build the foundation for the new quantum Reinforcement Learning method.
12#
發(fā)表于 2025-3-23 14:51:02 | 只看該作者
13#
發(fā)表于 2025-3-23 20:42:34 | 只看該作者
Future Steps in Quantum Reinforcement Learning for Complex Scenarios,This chapter summarizes future steps to enhance the performance of the quantum REINFORCE algorithm. It further shares some practical issues that arose while working with the IBM quantum hardware, which can be considered while developing other quantum policy gradient algorithms.
14#
發(fā)表于 2025-3-24 00:56:00 | 只看該作者
forcement Learning has proven its capabilities in different challenging optimization problems and is now an established method in Operations Research. However, complex attacker-defender scenarios have several characteristics that challenge Reinforcement Learning algorithms, requiring enormous comput
15#
發(fā)表于 2025-3-24 03:25:22 | 只看該作者
,Motivation: Complex Attacker-Defender Scenarios—The Eternal Conflict,ems. The connection between Reinforcement Learning and quantum computing is drawn to reduce the required computational power in Reinforcement Learning and an outlook on the research questions is given.
16#
發(fā)表于 2025-3-24 07:41:21 | 只看該作者
Applying Quantum REINFORCE to the Information Game,ring the results to the classical Q-learning and REINFORCE algorithms. The advantages of the new algorithm are derived and discussed. Additionally, details on the hyper-parameter optimization within the experiments are given.
17#
發(fā)表于 2025-3-24 12:00:44 | 只看該作者
18#
發(fā)表于 2025-3-24 15:03:30 | 只看該作者
19#
發(fā)表于 2025-3-24 21:55:52 | 只看該作者
Book 2022Learning has proven its capabilities in different challenging optimization problems and is now an established method in Operations Research. However, complex attacker-defender scenarios have several characteristics that challenge Reinforcement Learning algorithms, requiring enormous computational po
20#
發(fā)表于 2025-3-25 02:24:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 16:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
中卫市| 盐源县| 藁城市| 乃东县| 罗江县| 怀集县| 府谷县| 鄱阳县| 广西| 新蔡县| 交口县| 香格里拉县| 岐山县| 新野县| 民丰县| 安阳县| 岳池县| 广平县| 汕尾市| 兰坪| 淮安市| 子洲县| 四子王旗| 曲麻莱县| 慈利县| 卓尼县| 阜新市| 张家界市| 灌云县| 淮安市| 平泉县| 天长市| 交城县| 沁水县| 瑞金市| 洛宁县| 三门县| 浦城县| 永丰县| 广昌县| 白山市|