找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Reinforcement Learning with Hybrid Quantum Approximation in the NISQ Context; Leonhard Kunczik Book 2022 The Editor(s) (if applicable) and

[復(fù)制鏈接]
查看: 50086|回復(fù): 47
樓主
發(fā)表于 2025-3-21 19:27:47 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Reinforcement Learning with Hybrid Quantum Approximation in the NISQ Context
編輯Leonhard Kunczik
視頻videohttp://file.papertrans.cn/826/825945/825945.mp4
圖書封面Titlebook: Reinforcement Learning with Hybrid Quantum Approximation in the NISQ Context;  Leonhard Kunczik Book 2022 The Editor(s) (if applicable) and
描述This book explores the combination of Reinforcement Learning and Quantum Computing in the light of complex attacker-defender scenarios. Reinforcement Learning has proven its capabilities in different challenging optimization problems and is now an established method in Operations Research. However, complex attacker-defender scenarios have several characteristics that challenge Reinforcement Learning algorithms, requiring enormous computational power to obtain the optimal solution.?.The upcoming field of Quantum Computing is a promising path for solving computationally complex problems. Therefore, this work explores a hybrid quantum approach to policy gradient methods in Reinforcement Learning. It proposes a novel quantum REINFORCE algorithm that enhances its classical counterpart by Quantum Variational Circuits. The new algorithm is compared to classical algorithms regarding the convergence speed and memory usage on several attacker-defender scenarios with increasing complexity. In addition, to study its applicability on today‘s NISQ hardware, the algorithm is evaluated on IBM‘s quantum computers, which is accompanied by an in-depth analysis of the advantages of Quantum Reinforceme
出版日期Book 2022
關(guān)鍵詞Quantum Machine Learning; Quantum Reinforcement Learning; Quanten Computing; Reinforcement Learning; Att
版次1
doihttps://doi.org/10.1007/978-3-658-37616-1
isbn_softcover978-3-658-37615-4
isbn_ebook978-3-658-37616-1
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Fachmedien Wies
The information of publication is updating

書目名稱Reinforcement Learning with Hybrid Quantum Approximation in the NISQ Context影響因子(影響力)




書目名稱Reinforcement Learning with Hybrid Quantum Approximation in the NISQ Context影響因子(影響力)學(xué)科排名




書目名稱Reinforcement Learning with Hybrid Quantum Approximation in the NISQ Context網(wǎng)絡(luò)公開度




書目名稱Reinforcement Learning with Hybrid Quantum Approximation in the NISQ Context網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Reinforcement Learning with Hybrid Quantum Approximation in the NISQ Context被引頻次




書目名稱Reinforcement Learning with Hybrid Quantum Approximation in the NISQ Context被引頻次學(xué)科排名




書目名稱Reinforcement Learning with Hybrid Quantum Approximation in the NISQ Context年度引用




書目名稱Reinforcement Learning with Hybrid Quantum Approximation in the NISQ Context年度引用學(xué)科排名




書目名稱Reinforcement Learning with Hybrid Quantum Approximation in the NISQ Context讀者反饋




書目名稱Reinforcement Learning with Hybrid Quantum Approximation in the NISQ Context讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:34:44 | 只看該作者
Applying Quantum REINFORCE to the Information Game,ring the results to the classical Q-learning and REINFORCE algorithms. The advantages of the new algorithm are derived and discussed. Additionally, details on the hyper-parameter optimization within the experiments are given.
板凳
發(fā)表于 2025-3-22 03:34:23 | 只看該作者
,Evaluating Quantum REINFORCE on IBM’s Quantum Hardware,To achieve this the algorithm is adapted to the hardware and the results are compared to the solution obtained with a quantum simulator. Based on the experiments the second research question is answered.
地板
發(fā)表于 2025-3-22 06:47:56 | 只看該作者
5#
發(fā)表于 2025-3-22 09:04:44 | 只看該作者
http://image.papertrans.cn/r/image/825945.jpg
6#
發(fā)表于 2025-3-22 14:52:09 | 只看該作者
7#
發(fā)表于 2025-3-22 18:43:46 | 只看該作者
8#
發(fā)表于 2025-3-23 01:18:24 | 只看該作者
,The Information Game—A special Attacker-Defender Scenario,This chapter introduces the Information Game, a scale-able attacker-defender scenario that is studied within this work.
9#
發(fā)表于 2025-3-23 04:27:48 | 只看該作者
10#
發(fā)表于 2025-3-23 09:24:59 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 16:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
牟定县| 吴桥县| 奉节县| 韶山市| 女性| 新平| 金寨县| 扶余县| 荥经县| 海林市| 弥渡县| 外汇| 梁平县| 桂林市| 保山市| 寿阳县| 屏东县| 手机| 万宁市| 义乌市| 光泽县| 高要市| 武城县| 乐至县| 万宁市| 西华县| 广河县| 罗平县| 龙川县| 淳安县| 洪洞县| 秦皇岛市| 凤台县| 红原县| 普宁市| 广水市| 阳春市| 历史| 保山市| 朝阳市| 保康县|