找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Reinforcement Learning with Hybrid Quantum Approximation in the NISQ Context; Leonhard Kunczik Book 2022 The Editor(s) (if applicable) and

[復(fù)制鏈接]
樓主: BID
11#
發(fā)表于 2025-3-23 12:40:36 | 只看該作者
Approximation in Quantum Computing,This chapter focuses on function approximation in quantum computing and introduces quantum variational circuits as a quantum approximator. The idea of hybrid training, which combines classical machine learning algorithms with quantum variational circuits is explained, to build the foundation for the new quantum Reinforcement Learning method.
12#
發(fā)表于 2025-3-23 14:51:02 | 只看該作者
13#
發(fā)表于 2025-3-23 20:42:34 | 只看該作者
Future Steps in Quantum Reinforcement Learning for Complex Scenarios,This chapter summarizes future steps to enhance the performance of the quantum REINFORCE algorithm. It further shares some practical issues that arose while working with the IBM quantum hardware, which can be considered while developing other quantum policy gradient algorithms.
14#
發(fā)表于 2025-3-24 00:56:00 | 只看該作者
forcement Learning has proven its capabilities in different challenging optimization problems and is now an established method in Operations Research. However, complex attacker-defender scenarios have several characteristics that challenge Reinforcement Learning algorithms, requiring enormous comput
15#
發(fā)表于 2025-3-24 03:25:22 | 只看該作者
,Motivation: Complex Attacker-Defender Scenarios—The Eternal Conflict,ems. The connection between Reinforcement Learning and quantum computing is drawn to reduce the required computational power in Reinforcement Learning and an outlook on the research questions is given.
16#
發(fā)表于 2025-3-24 07:41:21 | 只看該作者
Applying Quantum REINFORCE to the Information Game,ring the results to the classical Q-learning and REINFORCE algorithms. The advantages of the new algorithm are derived and discussed. Additionally, details on the hyper-parameter optimization within the experiments are given.
17#
發(fā)表于 2025-3-24 12:00:44 | 只看該作者
18#
發(fā)表于 2025-3-24 15:03:30 | 只看該作者
19#
發(fā)表于 2025-3-24 21:55:52 | 只看該作者
Book 2022Learning has proven its capabilities in different challenging optimization problems and is now an established method in Operations Research. However, complex attacker-defender scenarios have several characteristics that challenge Reinforcement Learning algorithms, requiring enormous computational po
20#
發(fā)表于 2025-3-25 02:24:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-23 13:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
崇阳县| 灯塔市| 乐东| 桦甸市| 林口县| 独山县| 十堰市| 聂拉木县| 家居| 长武县| 那坡县| 中方县| 姜堰市| 襄垣县| 红原县| 耒阳市| 金秀| 治县。| 清徐县| 利津县| 安西县| 镇江市| 许昌县| 汉源县| 泽州县| 泰兴市| 偃师市| 丰顺县| 林周县| 阜城县| 安平县| 扎兰屯市| 黑河市| 秦皇岛市| 万全县| 石家庄市| 水城县| 海南省| 西安市| 日土县| 宁南县|