找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Non-Noetherian Commutative Ring Theory; Scott T. Chapman,Sarah Glaz Book 2000 Springer Science+Business Media Dordrecht 2000 Dimension.Div

[復(fù)制鏈接]
查看: 40797|回復(fù): 59
樓主
發(fā)表于 2025-3-21 18:31:59 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Non-Noetherian Commutative Ring Theory
編輯Scott T. Chapman,Sarah Glaz
視頻videohttp://file.papertrans.cn/667/666985/666985.mp4
叢書名稱Mathematics and Its Applications
圖書封面Titlebook: Non-Noetherian Commutative Ring Theory;  Scott T. Chapman,Sarah Glaz Book 2000 Springer Science+Business Media Dordrecht 2000 Dimension.Div
描述Commutative Ring Theory emerged as a distinct field of research in math- ematics only at the beginning of the twentieth century. It is rooted in nine- teenth century major works in Number Theory and Algebraic Geometry for which it provided a useful tool for proving results. From this humble origin, it flourished into a field of study in its own right of an astonishing richness and interest. Nowadays, one has to specialize in an area of this vast field in order to be able to master its wealth of results and come up with worthwhile contributions. One of the major areas of the field of Commutative Ring Theory is the study of non-Noetherian rings. The last ten years have seen a lively flurry of activity in this area, including: a large number of conferences and special sections at national and international meetings dedicated to presenting its results, an abundance of articles in scientific journals, and a substantial number of books capturing some of its topics. This rapid growth, and the occasion of the new Millennium, prompted us to embark on a project aimed at presenting an overview of the recent research in the area. With this in mind, we invited many of the most prominent researc
出版日期Book 2000
關(guān)鍵詞Dimension; Divisor; Grad; commutative ring; ring theory
版次1
doihttps://doi.org/10.1007/978-1-4757-3180-4
isbn_softcover978-1-4419-4835-9
isbn_ebook978-1-4757-3180-4
copyrightSpringer Science+Business Media Dordrecht 2000
The information of publication is updating

書目名稱Non-Noetherian Commutative Ring Theory影響因子(影響力)




書目名稱Non-Noetherian Commutative Ring Theory影響因子(影響力)學(xué)科排名




書目名稱Non-Noetherian Commutative Ring Theory網(wǎng)絡(luò)公開度




書目名稱Non-Noetherian Commutative Ring Theory網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Non-Noetherian Commutative Ring Theory被引頻次




書目名稱Non-Noetherian Commutative Ring Theory被引頻次學(xué)科排名




書目名稱Non-Noetherian Commutative Ring Theory年度引用




書目名稱Non-Noetherian Commutative Ring Theory年度引用學(xué)科排名




書目名稱Non-Noetherian Commutative Ring Theory讀者反饋




書目名稱Non-Noetherian Commutative Ring Theory讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:13:06 | 只看該作者
Mathematics and Its Applicationshttp://image.papertrans.cn/n/image/666985.jpg
板凳
發(fā)表于 2025-3-22 02:09:59 | 只看該作者
地板
發(fā)表于 2025-3-22 05:41:14 | 只看該作者
Half-Factorial Domains, a Survey,Let . be an integral domain. . is . if every nonzero nonunit of . can be written as a product of irreducible elements (or atoms) of . Let . represent the set of irreducible elements of . Traditionally, an atomic domain . is a unique factorization domain (UFD) if . .… . . = . .… . . for each ai and . . ∈. (.) implies:
5#
發(fā)表于 2025-3-22 10:55:38 | 只看該作者
6#
發(fā)表于 2025-3-22 14:16:28 | 只看該作者
7#
發(fā)表于 2025-3-22 19:51:39 | 只看該作者
978-1-4419-4835-9Springer Science+Business Media Dordrecht 2000
8#
發(fā)表于 2025-3-23 00:26:43 | 只看該作者
9#
發(fā)表于 2025-3-23 03:17:40 | 只看該作者
The Class Group and Local Class Group of an Integral Domain,tible (fractional) .ideals of . under t-multiplication, and let . (resp., . be its subgroup of principal (resp., invertible) (fractional) ideals. Then . is an abelian group, called the (.)class group of R; the Picard group of . is . and the local (.)class group of . is .. If . is a Krull domain, the
10#
發(fā)表于 2025-3-23 09:30:20 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 18:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阜新市| 湖口县| 碌曲县| 九寨沟县| 曲阳县| 拉萨市| 鹤山市| 吉林省| 新安县| 榕江县| 武乡县| 乐清市| 苍溪县| 聂荣县| 凤翔县| 桃园县| 洪洞县| 河北省| 民勤县| 神木县| 合阳县| 叶城县| 卓尼县| 盈江县| 望谟县| 清远市| 聊城市| 勃利县| 台南县| 隆子县| 浙江省| 田阳县| 阿尔山市| 炉霍县| 临海市| 邻水| 涞源县| 河曲县| 即墨市| 广宁县| 荥经县|