找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Non-Noetherian Commutative Ring Theory; Scott T. Chapman,Sarah Glaz Book 2000 Springer Science+Business Media Dordrecht 2000 Dimension.Div

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 10:42:36 | 只看該作者
12#
發(fā)表于 2025-3-23 14:54:21 | 只看該作者
13#
發(fā)表于 2025-3-23 19:30:58 | 只看該作者
Recent Progress on Going-Down I,earlier history, Ira Papick and I wrote a survey [78] which appeared in 1978. Since then, work in this area has continued unabated, and I propose to survey most of the post-1977 work concerning “going-down.” Because of limitations of space, our focus here is almost exclusively on papers of which I w
14#
發(fā)表于 2025-3-23 22:57:23 | 只看該作者
Localizing Systems and Semistar Operations,of star operation, as developed in Gilmer’s book [12], and hence the related classical theory of ideal systems based on the works of W. Krull, E. Noether, H. Prüfer, and P. Lorenzen from the 1930’s. For a systematic treatment of these ideas, see the books by P. Jaffard [17] and F. Halter-Koch [14],
15#
發(fā)表于 2025-3-24 04:51:07 | 只看該作者
Commutative Rings of Dimension 0, ., and hence is the unity of . All allusions to the dimension of a ring refer to its Krull dimension. Thus dim . = . if there exists a chain ...i. … < .. of proper prime ideals of ., but no longer such chain; dim . = ∞ if there exist arbitrarily long chains of prime ideals of . This paper is concer
16#
發(fā)表于 2025-3-24 08:00:42 | 只看該作者
Finite Conductor Rings with Zero Divisors, prominence with the publication of McAdam’s work [35]. The definition of a finite conductor domain appears in an early unpublished version of McAdam’s manuscript, but it appears in print for the first time in [11]. The notion embodies, in its various aspects, both factoriality properties and finite
17#
發(fā)表于 2025-3-24 13:54:19 | 只看該作者
18#
發(fā)表于 2025-3-24 15:51:49 | 只看該作者
19#
發(fā)表于 2025-3-24 19:00:55 | 只看該作者
20#
發(fā)表于 2025-3-24 23:11:10 | 只看該作者
Examples Built with D+M, A+XB[X] and other Pullback Constructions, of R. Gilmer’s book on multiplicative ideal theory [37] (or [38]). Others may have encountered them in Appendix 2 of the original Queen’s Notes version of the same book [36], or in A. Seidenberg’s second paper on the dimension of polynomial rings [53]. Basically in all three, the concentration is o
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 16:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
喜德县| 游戏| 滦南县| 仁化县| 左云县| 威海市| 南投市| 凌云县| 莎车县| 彰化市| 北辰区| 建昌县| 闸北区| 开平市| 长泰县| 逊克县| 呼图壁县| 景德镇市| 阜阳市| 星座| 教育| 徐闻县| 遂川县| 出国| 古田县| 临夏市| 甘肃省| 德化县| 手游| 涟水县| 南岸区| 闻喜县| 宜章县| 巴彦淖尔市| 和平区| 囊谦县| 牟定县| 鄂托克前旗| 镇原县| 固始县| 波密县|