找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Non-Noetherian Commutative Ring Theory; Scott T. Chapman,Sarah Glaz Book 2000 Springer Science+Business Media Dordrecht 2000 Dimension.Div

[復(fù)制鏈接]
查看: 40802|回復(fù): 59
樓主
發(fā)表于 2025-3-21 18:31:59 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Non-Noetherian Commutative Ring Theory
編輯Scott T. Chapman,Sarah Glaz
視頻videohttp://file.papertrans.cn/667/666985/666985.mp4
叢書名稱Mathematics and Its Applications
圖書封面Titlebook: Non-Noetherian Commutative Ring Theory;  Scott T. Chapman,Sarah Glaz Book 2000 Springer Science+Business Media Dordrecht 2000 Dimension.Div
描述Commutative Ring Theory emerged as a distinct field of research in math- ematics only at the beginning of the twentieth century. It is rooted in nine- teenth century major works in Number Theory and Algebraic Geometry for which it provided a useful tool for proving results. From this humble origin, it flourished into a field of study in its own right of an astonishing richness and interest. Nowadays, one has to specialize in an area of this vast field in order to be able to master its wealth of results and come up with worthwhile contributions. One of the major areas of the field of Commutative Ring Theory is the study of non-Noetherian rings. The last ten years have seen a lively flurry of activity in this area, including: a large number of conferences and special sections at national and international meetings dedicated to presenting its results, an abundance of articles in scientific journals, and a substantial number of books capturing some of its topics. This rapid growth, and the occasion of the new Millennium, prompted us to embark on a project aimed at presenting an overview of the recent research in the area. With this in mind, we invited many of the most prominent researc
出版日期Book 2000
關(guān)鍵詞Dimension; Divisor; Grad; commutative ring; ring theory
版次1
doihttps://doi.org/10.1007/978-1-4757-3180-4
isbn_softcover978-1-4419-4835-9
isbn_ebook978-1-4757-3180-4
copyrightSpringer Science+Business Media Dordrecht 2000
The information of publication is updating

書目名稱Non-Noetherian Commutative Ring Theory影響因子(影響力)




書目名稱Non-Noetherian Commutative Ring Theory影響因子(影響力)學(xué)科排名




書目名稱Non-Noetherian Commutative Ring Theory網(wǎng)絡(luò)公開度




書目名稱Non-Noetherian Commutative Ring Theory網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Non-Noetherian Commutative Ring Theory被引頻次




書目名稱Non-Noetherian Commutative Ring Theory被引頻次學(xué)科排名




書目名稱Non-Noetherian Commutative Ring Theory年度引用




書目名稱Non-Noetherian Commutative Ring Theory年度引用學(xué)科排名




書目名稱Non-Noetherian Commutative Ring Theory讀者反饋




書目名稱Non-Noetherian Commutative Ring Theory讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:13:06 | 只看該作者
Mathematics and Its Applicationshttp://image.papertrans.cn/n/image/666985.jpg
板凳
發(fā)表于 2025-3-22 02:09:59 | 只看該作者
地板
發(fā)表于 2025-3-22 05:41:14 | 只看該作者
Half-Factorial Domains, a Survey,Let . be an integral domain. . is . if every nonzero nonunit of . can be written as a product of irreducible elements (or atoms) of . Let . represent the set of irreducible elements of . Traditionally, an atomic domain . is a unique factorization domain (UFD) if . .… . . = . .… . . for each ai and . . ∈. (.) implies:
5#
發(fā)表于 2025-3-22 10:55:38 | 只看該作者
6#
發(fā)表于 2025-3-22 14:16:28 | 只看該作者
7#
發(fā)表于 2025-3-22 19:51:39 | 只看該作者
978-1-4419-4835-9Springer Science+Business Media Dordrecht 2000
8#
發(fā)表于 2025-3-23 00:26:43 | 只看該作者
9#
發(fā)表于 2025-3-23 03:17:40 | 只看該作者
The Class Group and Local Class Group of an Integral Domain,tible (fractional) .ideals of . under t-multiplication, and let . (resp., . be its subgroup of principal (resp., invertible) (fractional) ideals. Then . is an abelian group, called the (.)class group of R; the Picard group of . is . and the local (.)class group of . is .. If . is a Krull domain, the
10#
發(fā)表于 2025-3-23 09:30:20 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 11:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
荔浦县| 玉山县| 什邡市| 安新县| 中西区| 濮阳市| 潢川县| 科技| 南京市| 杨浦区| 新建县| 汶上县| 镇雄县| 普格县| 陆川县| 晋中市| 留坝县| 松潘县| 衡东县| 闵行区| 孟村| 海丰县| 安平县| 甘孜县| 文化| 越西县| 勃利县| 纳雍县| 和龙市| 泸定县| 巴青县| 长宁区| 珲春市| 金门县| 广昌县| 绥棱县| 黄石市| 吉隆县| 平利县| 沐川县| 东方市|