找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Non-Noetherian Commutative Ring Theory; Scott T. Chapman,Sarah Glaz Book 2000 Springer Science+Business Media Dordrecht 2000 Dimension.Div

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 10:42:36 | 只看該作者
12#
發(fā)表于 2025-3-23 14:54:21 | 只看該作者
13#
發(fā)表于 2025-3-23 19:30:58 | 只看該作者
Recent Progress on Going-Down I,earlier history, Ira Papick and I wrote a survey [78] which appeared in 1978. Since then, work in this area has continued unabated, and I propose to survey most of the post-1977 work concerning “going-down.” Because of limitations of space, our focus here is almost exclusively on papers of which I w
14#
發(fā)表于 2025-3-23 22:57:23 | 只看該作者
Localizing Systems and Semistar Operations,of star operation, as developed in Gilmer’s book [12], and hence the related classical theory of ideal systems based on the works of W. Krull, E. Noether, H. Prüfer, and P. Lorenzen from the 1930’s. For a systematic treatment of these ideas, see the books by P. Jaffard [17] and F. Halter-Koch [14],
15#
發(fā)表于 2025-3-24 04:51:07 | 只看該作者
Commutative Rings of Dimension 0, ., and hence is the unity of . All allusions to the dimension of a ring refer to its Krull dimension. Thus dim . = . if there exists a chain ...i. … < .. of proper prime ideals of ., but no longer such chain; dim . = ∞ if there exist arbitrarily long chains of prime ideals of . This paper is concer
16#
發(fā)表于 2025-3-24 08:00:42 | 只看該作者
Finite Conductor Rings with Zero Divisors, prominence with the publication of McAdam’s work [35]. The definition of a finite conductor domain appears in an early unpublished version of McAdam’s manuscript, but it appears in print for the first time in [11]. The notion embodies, in its various aspects, both factoriality properties and finite
17#
發(fā)表于 2025-3-24 13:54:19 | 只看該作者
18#
發(fā)表于 2025-3-24 15:51:49 | 只看該作者
19#
發(fā)表于 2025-3-24 19:00:55 | 只看該作者
20#
發(fā)表于 2025-3-24 23:11:10 | 只看該作者
Examples Built with D+M, A+XB[X] and other Pullback Constructions, of R. Gilmer’s book on multiplicative ideal theory [37] (or [38]). Others may have encountered them in Appendix 2 of the original Queen’s Notes version of the same book [36], or in A. Seidenberg’s second paper on the dimension of polynomial rings [53]. Basically in all three, the concentration is o
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 11:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沂南县| 萨迦县| 比如县| 夹江县| 泰州市| 宜春市| 西华县| 宝应县| 柘城县| 阜新| 林西县| 怀安县| 九龙坡区| 正阳县| 阿瓦提县| 绵阳市| 额尔古纳市| 饶平县| 汪清县| 进贤县| 宜兰县| 泰兴市| 海伦市| 南澳县| 繁峙县| 兴国县| 萨嘎县| 柯坪县| 如东县| 罗山县| 宁都县| 淮北市| 宣恩县| 射洪县| 宜阳县| 合山市| 大理市| 牟定县| 江津市| 壤塘县| 德昌县|