找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Neural Information Processing; 30th International C Biao Luo,Long Cheng,Chaojie Li Conference proceedings 2024 The Editor(s) (if applicable

[復(fù)制鏈接]
樓主: Flange
31#
發(fā)表于 2025-3-26 22:52:49 | 只看該作者
PBTR: Pre-training and?Bidirectional Semantic Enhanced Trajectory Recoveryental factors often result in missing track records, significantly impacting the trajectory data quality. It is a fundamental task to restore the missing vehicle tracks within the traffic network structure. Existing research has attempted to address this issue through the construction of neural netw
32#
發(fā)表于 2025-3-27 04:58:18 | 只看該作者
Event-Aware Document-Level Event Extraction via?Multi-granularity Event Encoder the prior research has largely concentrated on sentence-level event extraction (SEE), while disregarding the increasing requirements for document-level event extraction (DEE) in real-world scenarios. The latter presents two significant challenges, namely the arguments scattering problem and the mul
33#
發(fā)表于 2025-3-27 05:49:34 | 只看該作者
34#
發(fā)表于 2025-3-27 12:45:50 | 只看該作者
35#
發(fā)表于 2025-3-27 17:38:16 | 只看該作者
Instance-Aware and?Semantic-Guided Prompt for?Few-Shot Learning in?Large Language ModelstGPT). However, current prompt learning methods usually use a unified template for the same tasks, and the template is difficult to capture significant information from different instances. To integrate the semantic attention dynamically on the instance level, We propose ISPrompt, an .nstance-.emant
36#
發(fā)表于 2025-3-27 19:38:57 | 只看該作者
37#
發(fā)表于 2025-3-27 22:58:10 | 只看該作者
SODet: A LiDAR-Based Object Detector in?Bird’s-Eye Views from a bird’s-eye view perspective remains challenging. To address this issue, the paper presents ., an efficient single-stage 3D object detector designed to enhance the perception of small objects like pedestrians and cyclists. SODet incorporates several key components and techniques. To capture
38#
發(fā)表于 2025-3-28 05:03:58 | 只看該作者
Landmark-Assisted Facial Action Unit Detection with?Optimal Attention and?Contrastive Learningtention-based landmark features as well as contrastive learning to improve the performance of AU detection. Firstly, the backbone is a weakly-supervised algorithm since AU datasets in the wild are scarce and the utilization of other public datasets can capture robust basic facial features and landma
39#
發(fā)表于 2025-3-28 07:04:12 | 只看該作者
Multi-scale Local Region-Based Facial Action Unit Detection with?Graph Convolutional Networks at different scales, and may interact with each other. However, most existing methods fail to extract the multi-scale feature at local facial region, or consider the AU relationship in the classifiers. In this paper, we propose a novel multi-scale local region-based facial AU detection framework w
40#
發(fā)表于 2025-3-28 14:05:17 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 17:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
上饶市| 铜梁县| 苏尼特左旗| 财经| 潍坊市| 鄯善县| 新宾| 莱州市| 商河县| 璧山县| 常德市| 赤峰市| 高邮市| 新巴尔虎右旗| 泰州市| 和顺县| 福建省| 巴林右旗| 湛江市| 三门峡市| 桦南县| 枣强县| 静宁县| 岳池县| 青冈县| 宁化县| 纳雍县| 高邑县| 湖北省| 宜良县| 临西县| 曲阜市| 高邑县| 宁海县| 灵山县| 曲靖市| 阿克| 高青县| 江川县| 邻水| 卢龙县|