找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Neural Information Processing; 30th International C Biao Luo,Long Cheng,Chaojie Li Conference proceedings 2024 The Editor(s) (if applicable

[復(fù)制鏈接]
樓主: Flange
41#
發(fā)表于 2025-3-28 18:19:16 | 只看該作者
42#
發(fā)表于 2025-3-28 21:04:25 | 只看該作者
Improving Out-of-Distribution Detection with?Margin-Based Prototype Learningntly improved OOD detection performance by optimizing the representation space. However, practical scenarios present a challenge where OOD samples near class boundaries may overlap with in-distribution samples in the feature space, resulting in misclassification, and few methods have considered the
43#
發(fā)表于 2025-3-29 01:37:36 | 只看該作者
Text-to-Image Synthesis with?Threshold-Equipped Matching-Aware GANtering inaccurate negative samples, the discriminator can more accurately determine whether the generator has generated the images correctly according to the descriptions. In addition, to enhance the discriminative model’s ability to discriminate and capture key semantic information, a word fine-gra
44#
發(fā)表于 2025-3-29 06:49:01 | 只看該作者
45#
發(fā)表于 2025-3-29 10:51:24 | 只看該作者
Dual-Branch Contrastive Learning for?Network Representation Learning network representation learning. However, existing GCL-based network representation methods mostly use a single-branch contrastive approach, which makes it difficult to learn deeper semantic relationships and is easily affected by noisy connections during the process of obtaining global structural
46#
發(fā)表于 2025-3-29 14:34:51 | 只看該作者
Multi-granularity Contrastive Siamese Networks for?Abstractive Text Summarizationformative summaries. Sequence-to-Sequence (Seq2 Seq) models have achieved good results in abstractive text summarization in recent years. However, such models are often sensitive to noise information in the training data and exhibit fragility in practical applications. To enhance the denoising abili
47#
發(fā)表于 2025-3-29 18:33:13 | 只看該作者
Joint Entity and?Relation Extraction for?Legal Documents Based on?Table Fillingstructured triplets from rich unstructured legal texts. However, the existing methods for joint entity relation extraction in legal judgment documents often lack domain-specific knowledge, and are difficult to effectively solve the problem of entity overlap in legal texts. To address these issues, w
48#
發(fā)表于 2025-3-29 21:40:42 | 只看該作者
49#
發(fā)表于 2025-3-30 03:14:28 | 只看該作者
50#
發(fā)表于 2025-3-30 06:31:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 21:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
来安县| 木里| 绥芬河市| 屯门区| 九龙坡区| 如皋市| 杭锦后旗| 平顶山市| 昭苏县| 股票| 铜陵市| 芜湖市| 鸡泽县| 巴青县| 南丹县| 临江市| 麟游县| 芦溪县| 印江| 新宁县| 磴口县| 霍城县| 宜兰市| 汕头市| 河北省| 宜阳县| 错那县| 巴楚县| 青田县| 雷波县| 邢台县| 股票| 灵寿县| 清徐县| 东乡县| 金阳县| 太仆寺旗| 开鲁县| 西乌| 大同市| 裕民县|