找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Neural Information Processing; 30th International C Biao Luo,Long Cheng,Chaojie Li Conference proceedings 2024 The Editor(s) (if applicable

[復(fù)制鏈接]
樓主: Flange
31#
發(fā)表于 2025-3-26 22:52:49 | 只看該作者
PBTR: Pre-training and?Bidirectional Semantic Enhanced Trajectory Recoveryental factors often result in missing track records, significantly impacting the trajectory data quality. It is a fundamental task to restore the missing vehicle tracks within the traffic network structure. Existing research has attempted to address this issue through the construction of neural netw
32#
發(fā)表于 2025-3-27 04:58:18 | 只看該作者
Event-Aware Document-Level Event Extraction via?Multi-granularity Event Encoder the prior research has largely concentrated on sentence-level event extraction (SEE), while disregarding the increasing requirements for document-level event extraction (DEE) in real-world scenarios. The latter presents two significant challenges, namely the arguments scattering problem and the mul
33#
發(fā)表于 2025-3-27 05:49:34 | 只看該作者
34#
發(fā)表于 2025-3-27 12:45:50 | 只看該作者
35#
發(fā)表于 2025-3-27 17:38:16 | 只看該作者
Instance-Aware and?Semantic-Guided Prompt for?Few-Shot Learning in?Large Language ModelstGPT). However, current prompt learning methods usually use a unified template for the same tasks, and the template is difficult to capture significant information from different instances. To integrate the semantic attention dynamically on the instance level, We propose ISPrompt, an .nstance-.emant
36#
發(fā)表于 2025-3-27 19:38:57 | 只看該作者
37#
發(fā)表于 2025-3-27 22:58:10 | 只看該作者
SODet: A LiDAR-Based Object Detector in?Bird’s-Eye Views from a bird’s-eye view perspective remains challenging. To address this issue, the paper presents ., an efficient single-stage 3D object detector designed to enhance the perception of small objects like pedestrians and cyclists. SODet incorporates several key components and techniques. To capture
38#
發(fā)表于 2025-3-28 05:03:58 | 只看該作者
Landmark-Assisted Facial Action Unit Detection with?Optimal Attention and?Contrastive Learningtention-based landmark features as well as contrastive learning to improve the performance of AU detection. Firstly, the backbone is a weakly-supervised algorithm since AU datasets in the wild are scarce and the utilization of other public datasets can capture robust basic facial features and landma
39#
發(fā)表于 2025-3-28 07:04:12 | 只看該作者
Multi-scale Local Region-Based Facial Action Unit Detection with?Graph Convolutional Networks at different scales, and may interact with each other. However, most existing methods fail to extract the multi-scale feature at local facial region, or consider the AU relationship in the classifiers. In this paper, we propose a novel multi-scale local region-based facial AU detection framework w
40#
發(fā)表于 2025-3-28 14:05:17 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 19:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
丹棱县| 额济纳旗| 泸水县| 凭祥市| 岳阳市| 周宁县| 泸溪县| 西充县| 浪卡子县| 瓦房店市| 大名县| 湟源县| 陆河县| 东乡县| 大田县| 沁源县| 贡觉县| 北碚区| 曲阜市| 漳浦县| 镇宁| 茶陵县| 永和县| 若羌县| 三台县| 孟州市| 肇东市| 紫云| 林甸县| 彝良县| 和龙市| 斗六市| 孟津县| 卫辉市| 双流县| 正定县| 武鸣县| 福建省| 于都县| 敦煌市| 佳木斯市|