找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Neural Information Processing; 30th International C Biao Luo,Long Cheng,Chaojie Li Conference proceedings 2024 The Editor(s) (if applicable

[復(fù)制鏈接]
樓主: Flange
41#
發(fā)表于 2025-3-28 18:19:16 | 只看該作者
42#
發(fā)表于 2025-3-28 21:04:25 | 只看該作者
Improving Out-of-Distribution Detection with?Margin-Based Prototype Learningntly improved OOD detection performance by optimizing the representation space. However, practical scenarios present a challenge where OOD samples near class boundaries may overlap with in-distribution samples in the feature space, resulting in misclassification, and few methods have considered the
43#
發(fā)表于 2025-3-29 01:37:36 | 只看該作者
Text-to-Image Synthesis with?Threshold-Equipped Matching-Aware GANtering inaccurate negative samples, the discriminator can more accurately determine whether the generator has generated the images correctly according to the descriptions. In addition, to enhance the discriminative model’s ability to discriminate and capture key semantic information, a word fine-gra
44#
發(fā)表于 2025-3-29 06:49:01 | 只看該作者
45#
發(fā)表于 2025-3-29 10:51:24 | 只看該作者
Dual-Branch Contrastive Learning for?Network Representation Learning network representation learning. However, existing GCL-based network representation methods mostly use a single-branch contrastive approach, which makes it difficult to learn deeper semantic relationships and is easily affected by noisy connections during the process of obtaining global structural
46#
發(fā)表于 2025-3-29 14:34:51 | 只看該作者
Multi-granularity Contrastive Siamese Networks for?Abstractive Text Summarizationformative summaries. Sequence-to-Sequence (Seq2 Seq) models have achieved good results in abstractive text summarization in recent years. However, such models are often sensitive to noise information in the training data and exhibit fragility in practical applications. To enhance the denoising abili
47#
發(fā)表于 2025-3-29 18:33:13 | 只看該作者
Joint Entity and?Relation Extraction for?Legal Documents Based on?Table Fillingstructured triplets from rich unstructured legal texts. However, the existing methods for joint entity relation extraction in legal judgment documents often lack domain-specific knowledge, and are difficult to effectively solve the problem of entity overlap in legal texts. To address these issues, w
48#
發(fā)表于 2025-3-29 21:40:42 | 只看該作者
49#
發(fā)表于 2025-3-30 03:14:28 | 只看該作者
50#
發(fā)表于 2025-3-30 06:31:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 15:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
商都县| 土默特右旗| 东海县| 东辽县| 赫章县| 海南省| 石家庄市| 上虞市| 杭锦旗| 桃园市| 唐山市| 托克逊县| 石嘴山市| 桑日县| 成都市| 星子县| 全南县| 陵川县| 响水县| 玛曲县| 新邵县| 文化| 禹城市| 于田县| 南昌市| 大化| 云安县| 稷山县| 弋阳县| 老河口市| 邢台县| 廉江市| 曲松县| 镇沅| 四平市| 井陉县| 逊克县| 上杭县| 武义县| 繁昌县| 绵阳市|