找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Neural Information Processing; 30th International C Biao Luo,Long Cheng,Chaojie Li Conference proceedings 2024 The Editor(s) (if applicable

[復(fù)制鏈接]
樓主: Flange
21#
發(fā)表于 2025-3-25 04:47:10 | 只看該作者
22#
發(fā)表于 2025-3-25 07:53:26 | 只看該作者
Joint Regularization Knowledge Distillationtween networks are reduced when training with a central example. Teacher and student networks will become more similar as a result of joint training. Extensive experimental results on benchmark datasets such as CIFAR-10, CIFAR-100, and Tiny-ImagNet show that JRKD outperforms many advanced distillati
23#
發(fā)表于 2025-3-25 13:00:42 | 只看該作者
Dual-Branch Contrastive Learning for?Network Representation Learningis proposed, in which the two generated views are compared with the original graph separately, and the joint optimization method is used to continuously update the two views, allowing the model to learn more discriminative feature representations. The proposed method was evaluated on three datasets,
24#
發(fā)表于 2025-3-25 17:05:59 | 只看該作者
Multi-granularity Contrastive Siamese Networks for?Abstractive Text Summarizationcy between the representations of the augmented text pairs through a Siamese network. We conduct empirical experiments on the CNN/Daily Mail and XSum datasets. Compared to many existing benchmarks, the results validate the effectiveness of our model.
25#
發(fā)表于 2025-3-25 23:35:56 | 只看該作者
Joint Entity and?Relation Extraction for?Legal Documents Based on?Table Fillingsional table that can express the relation between word pairs for each relation separately and designing three table-filling strategies to decode the triples under the corresponding relations. The experimental results on the information extraction dataset in “CAIL2021” show that the proposed method
26#
發(fā)表于 2025-3-26 00:16:28 | 只看該作者
Dy-KD: Dynamic Knowledge Distillation for?Reduced Easy Examples the experimental results show that: (1) Use the curriculum strategy to discard easy examples to prevent the model’s fitting ability from being consumed by fitting easy examples. (2) Giving hard and easy examples varied weight so that the model emphasizes learning hard examples, which can boost stud
27#
發(fā)表于 2025-3-26 04:54:08 | 只看該作者
28#
發(fā)表于 2025-3-26 10:19:30 | 只看該作者
Haifeng Qing,Ning Jiang,Jialiang Tang,Xinlei Huang,Wengqing Wuense benefit to all readers who are interested in starting research in this area. In addition, it offers experienced researchers a valuable overview of the latest work in this area..978-981-10-8714-1978-981-10-8715-8Series ISSN 2191-5768 Series E-ISSN 2191-5776
29#
發(fā)表于 2025-3-26 14:05:31 | 只看該作者
30#
發(fā)表于 2025-3-26 19:39:31 | 只看該作者
Jinta Weng,Donghao Li,Yifan Deng,Jie Zhang,Yue Hu,Heyan Huang
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 17:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新乡县| 新巴尔虎右旗| 株洲县| 石楼县| 五台县| 奇台县| 蓝山县| 乌鲁木齐县| 浪卡子县| 扎兰屯市| 汝南县| 常德市| 巨野县| 衡阳县| 明水县| 河南省| 江城| 荣昌县| 金华市| 印江| 扶沟县| 无极县| 宜丰县| 肃北| 犍为县| 宿松县| 德令哈市| 遂溪县| 册亨县| 鄂托克旗| 木兰县| 桂平市| 太白县| 大洼县| 绥棱县| 龙游县| 繁峙县| 永清县| 乌审旗| 紫云| 佛坪县|