找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Deep Learning in Computational Toxicology; Huixiao Hong Book 2023 This is a U.S. government work and not under copyri

[復(fù)制鏈接]
樓主: 適婚女孩
31#
發(fā)表于 2025-3-26 23:22:08 | 只看該作者
32#
發(fā)表于 2025-3-27 05:08:38 | 只看該作者
33#
發(fā)表于 2025-3-27 07:26:58 | 只看該作者
Huixiao Hong,Jie Liu,Weigong Ge,Sugunadevi Sakkiah,Wenjing Guo,Gokhan Yavas,Chaoyang Zhang,Ping Gong
34#
發(fā)表于 2025-3-27 10:22:54 | 只看該作者
35#
發(fā)表于 2025-3-27 15:29:37 | 只看該作者
36#
發(fā)表于 2025-3-27 21:02:52 | 只看該作者
Assessment of the Xenobiotics Toxicity Taking into Account Their Metabolismutical drug R&D, experimental metabolite structure is often not yet available. To increase the safety profile of novel pharmaceutical agents, a computer-aided assessment of toxicity should be performed based on the structural formulae of both parent compounds and their metabolites. In this chapter,
37#
發(fā)表于 2025-3-27 23:08:19 | 只看該作者
Emerging Machine Learning Techniques in Predicting Adverse Drug Reactionsne learning models have been developed to characterize, predict and prevent ADRs. However, it is a challenge for the models to effectively extract features and make predictions based on multiple sources of heterogeneous and complex data. In this chapter, different types of drug-related features and
38#
發(fā)表于 2025-3-28 05:09:32 | 只看該作者
Drug Effect Deep Learner Based on Graphical Convolutional Networkmulti-source information such as the gene interaction networks of human cells, the structure of drug molecules, and the gene expressions induced by drugs. In the model, genes, cells, even drug effects are all represent by 1024-dimensional vectors. Based on the vector representations, we develop a de
39#
發(fā)表于 2025-3-28 08:30:24 | 只看該作者
AOP-Based Machine Learning for Toxicity Prediction imperative to evaluate the toxic effects of these compounds. However, the cost and time required to obtain toxicity data through traditional in vivo experimental methods are high. The promise of obtaining toxicity data through virtual screening, especially machine learning (ML) algorithms, has attr
40#
發(fā)表于 2025-3-28 11:00:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 04:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
留坝县| 兴隆县| 乌鲁木齐县| 鹤山市| 临高县| 汨罗市| 沙田区| 喀喇沁旗| 莒南县| 萨迦县| 城步| 台州市| 资阳市| 南昌县| 木兰县| 壶关县| 康保县| 皋兰县| 贵阳市| 谷城县| 泗洪县| 贵德县| 浦北县| 招远市| 台湾省| 黄石市| 永年县| 洪湖市| 揭东县| 民丰县| 岳西县| 崇州市| 时尚| 延吉市| 洛南县| 孝义市| 桐庐县| 尚义县| 平安县| 抚松县| 杭州市|