找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Deep Learning in Computational Toxicology; Huixiao Hong Book 2023 This is a U.S. government work and not under copyri

[復(fù)制鏈接]
樓主: 適婚女孩
31#
發(fā)表于 2025-3-26 23:22:08 | 只看該作者
32#
發(fā)表于 2025-3-27 05:08:38 | 只看該作者
33#
發(fā)表于 2025-3-27 07:26:58 | 只看該作者
Huixiao Hong,Jie Liu,Weigong Ge,Sugunadevi Sakkiah,Wenjing Guo,Gokhan Yavas,Chaoyang Zhang,Ping Gong
34#
發(fā)表于 2025-3-27 10:22:54 | 只看該作者
35#
發(fā)表于 2025-3-27 15:29:37 | 只看該作者
36#
發(fā)表于 2025-3-27 21:02:52 | 只看該作者
Assessment of the Xenobiotics Toxicity Taking into Account Their Metabolismutical drug R&D, experimental metabolite structure is often not yet available. To increase the safety profile of novel pharmaceutical agents, a computer-aided assessment of toxicity should be performed based on the structural formulae of both parent compounds and their metabolites. In this chapter,
37#
發(fā)表于 2025-3-27 23:08:19 | 只看該作者
Emerging Machine Learning Techniques in Predicting Adverse Drug Reactionsne learning models have been developed to characterize, predict and prevent ADRs. However, it is a challenge for the models to effectively extract features and make predictions based on multiple sources of heterogeneous and complex data. In this chapter, different types of drug-related features and
38#
發(fā)表于 2025-3-28 05:09:32 | 只看該作者
Drug Effect Deep Learner Based on Graphical Convolutional Networkmulti-source information such as the gene interaction networks of human cells, the structure of drug molecules, and the gene expressions induced by drugs. In the model, genes, cells, even drug effects are all represent by 1024-dimensional vectors. Based on the vector representations, we develop a de
39#
發(fā)表于 2025-3-28 08:30:24 | 只看該作者
AOP-Based Machine Learning for Toxicity Prediction imperative to evaluate the toxic effects of these compounds. However, the cost and time required to obtain toxicity data through traditional in vivo experimental methods are high. The promise of obtaining toxicity data through virtual screening, especially machine learning (ML) algorithms, has attr
40#
發(fā)表于 2025-3-28 11:00:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 04:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大理市| 农安县| 三江| 合山市| 东辽县| 温泉县| 铜鼓县| 开阳县| 永胜县| 肥乡县| 汨罗市| 德清县| 武山县| 信宜市| 永康市| 凤山市| 清流县| 天峨县| 东辽县| 太康县| 澳门| 静安区| 石棉县| 亳州市| 汉中市| 荔浦县| 丰县| 锡林郭勒盟| 内丘县| 额尔古纳市| 大港区| 铜山县| 潞城市| 舒兰市| 迁安市| 桂阳县| 昌吉市| 阿拉善盟| 桃园市| 鹤庆县| 钟祥市|