找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Deep Learning in Computational Toxicology; Huixiao Hong Book 2023 This is a U.S. government work and not under copyri

[復(fù)制鏈接]
樓主: 適婚女孩
41#
發(fā)表于 2025-3-28 15:17:18 | 只看該作者
42#
發(fā)表于 2025-3-28 19:56:10 | 只看該作者
Multitask Learning for Quantitative Structure–Activity Relationships: A Tutorialonships and computational toxicology, multitask learning is gaining more and more interest, owed to its potential to improve the predictive performance of underrepresented tasks and to predict the multi-property profile of molecules. In this chapter, after introducing the multitask problem formulati
43#
發(fā)表于 2025-3-28 23:07:10 | 只看該作者
44#
發(fā)表于 2025-3-29 04:41:33 | 只看該作者
ED Profiler: Machine Learning Tool for Screening Potential Endocrine-Disrupting Chemicalserious effects of EDCs on the endocrine system of living organisms, we should identify and screen potential EDCs from the current myriad of commercially used chemicals. Computational models and software have been increasingly recognized as a valuable, effective, and powerful high-throughput virtual
45#
發(fā)表于 2025-3-29 09:16:13 | 只看該作者
Quantitative Target-specific Toxicity Prediction Modeling (QTTPM): Coupling Machine Learning with Dyere we proposed a new concept of dynamic protein–ligand interaction descriptors (dyPLIDs) derived from molecular dynamics (MD) simulations and developed a novel quantitative target-specific toxicity prediction modeling (QTTPM) approach by integrating dyPLIDs with machine learning. In this proof-of-c
46#
發(fā)表于 2025-3-29 13:53:58 | 只看該作者
Mold2 Descriptors Facilitate Development of Machine Learning and Deep Learning Models for Predictingxicity of chemicals. Mold2 is a software tool developed in C++ for fast calculating molecular descriptors from two-dimensional structures. Mold2 descriptors contain rich information and can be used to build high-performance models in computational toxicology. Multiple studies have compared Mold2 des
47#
發(fā)表于 2025-3-29 16:59:13 | 只看該作者
Applicability Domain Characterization for Machine Learning QSAR Modelsedented success in developing “high-performance” QSAR models with various machine learning algorithms. Nonetheless, QSAR models are intrinsically data-driven models, in which patterns or rules are learned from training samples and thus can only be valid within limited applicability domains (AD). In
48#
發(fā)表于 2025-3-29 22:57:05 | 只看該作者
Controlling for Confounding in Complex Survey Machine Learning Models to Assess Drug Safety and Risk to complex survey data remain virtually unknown, which discourages analysis on survey data more complex than that of prevalence. The National Health and Nutrition Examination Survey (NHANES) is a long-running, complex survey designed to assess the health and well-being of adults and children in the
49#
發(fā)表于 2025-3-30 00:39:25 | 只看該作者
50#
發(fā)表于 2025-3-30 06:31:53 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 07:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新泰市| 平谷区| 黄冈市| 永康市| 金溪县| 米易县| 湖北省| 镇江市| 疏勒县| 武汉市| 正安县| 孟津县| 石河子市| 镇巴县| 瑞昌市| 固原市| 韶关市| 顺昌县| 昌邑市| 嘉峪关市| 南安市| 三亚市| 鄂托克旗| 洪江市| 上犹县| 清丰县| 大荔县| 通辽市| 界首市| 安溪县| 桦南县| 徐州市| 项城市| 蓬溪县| 曲麻莱县| 乌拉特前旗| 榆中县| 裕民县| 平顶山市| 吐鲁番市| 文安县|