找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Deep Learning in Computational Toxicology; Huixiao Hong Book 2023 This is a U.S. government work and not under copyri

[復(fù)制鏈接]
查看: 16530|回復(fù): 55
樓主
發(fā)表于 2025-3-21 17:57:40 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Machine Learning and Deep Learning in Computational Toxicology
編輯Huixiao Hong
視頻videohttp://file.papertrans.cn/621/620469/620469.mp4
概述Covers comprehensive view of the machine learning and deep learning algorithms, methods, and software tools.Provides many practical applications of machine learning and deep learning techniques in pre
叢書名稱Computational Methods in Engineering & the Sciences
圖書封面Titlebook: Machine Learning and Deep Learning in Computational Toxicology;  Huixiao Hong Book 2023 This is a U.S. government work and not under copyri
描述This book is a collection of machine learning and deep learning algorithms, methods, architectures, and software tools that have been developed and widely applied in predictive toxicology. It compiles a set of recent applications using state-of-the-art machine learning and deep learning techniques in analysis of a variety of toxicological endpoint data. The contents illustrate those machine learning and deep learning algorithms, methods, and software tools and summarise the applications of machine learning and deep learning in predictive toxicology with informative text, figures, and tables that are contributed by the first tier of experts. One of the major features is the case studies of applications of machine learning and deep learning in toxicological research that serve as examples for readers to learn how to apply machine learning and deep learning techniques in predictive toxicology. This book is expected to provide a reference for practical applications of machine learning anddeep learning in toxicological research. It is a useful guide for toxicologists, chemists, drug discovery and development researchers, regulatory scientists, government reviewers, and graduate students
出版日期Book 2023
關(guān)鍵詞Machine Learning; Deep Learning; Toxicology; Model; Prediction; Algorithm
版次1
doihttps://doi.org/10.1007/978-3-031-20730-3
isbn_softcover978-3-031-20732-7
isbn_ebook978-3-031-20730-3Series ISSN 2662-4869 Series E-ISSN 2662-4877
issn_series 2662-4869
copyrightThis is a U.S. government work and not under copyright protection in the U.S.; foreign copyright pro
The information of publication is updating

書目名稱Machine Learning and Deep Learning in Computational Toxicology影響因子(影響力)




書目名稱Machine Learning and Deep Learning in Computational Toxicology影響因子(影響力)學(xué)科排名




書目名稱Machine Learning and Deep Learning in Computational Toxicology網(wǎng)絡(luò)公開度




書目名稱Machine Learning and Deep Learning in Computational Toxicology網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Machine Learning and Deep Learning in Computational Toxicology被引頻次




書目名稱Machine Learning and Deep Learning in Computational Toxicology被引頻次學(xué)科排名




書目名稱Machine Learning and Deep Learning in Computational Toxicology年度引用




書目名稱Machine Learning and Deep Learning in Computational Toxicology年度引用學(xué)科排名




書目名稱Machine Learning and Deep Learning in Computational Toxicology讀者反饋




書目名稱Machine Learning and Deep Learning in Computational Toxicology讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:40:05 | 只看該作者
Huixiao HongCovers comprehensive view of the machine learning and deep learning algorithms, methods, and software tools.Provides many practical applications of machine learning and deep learning techniques in pre
板凳
發(fā)表于 2025-3-22 01:52:21 | 只看該作者
地板
發(fā)表于 2025-3-22 04:53:11 | 只看該作者
978-3-031-20732-7This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright pro
5#
發(fā)表于 2025-3-22 09:56:51 | 只看該作者
6#
發(fā)表于 2025-3-22 13:54:08 | 只看該作者
Machine Learning and Deep Learning Promote Computational Toxicology for Risk Assessment of Chemicalical reasoning from the human eye and linear experiments to artificial intelligence will improve computational toxicology for risk assessment by unearthing novel discoveries through making unexpected connections across data types, datasets, and toxicology disciplines.
7#
發(fā)表于 2025-3-22 19:56:13 | 只看該作者
8#
發(fā)表于 2025-3-22 22:51:12 | 只看該作者
2662-4869 ions of machine learning and deep learning techniques in preThis book is a collection of machine learning and deep learning algorithms, methods, architectures, and software tools that have been developed and widely applied in predictive toxicology. It compiles a set of recent applications using stat
9#
發(fā)表于 2025-3-23 04:21:31 | 只看該作者
Assessment of the Xenobiotics Toxicity Taking into Account Their Metabolismal effects. Herein, we propose the concept of integral toxicity that concomitantly reflects the overall biological activity of a pharmaceutical substance and its metabolites. The current possibilities and limitations of the multifaceted computational assessment of xenobiotics toxicity are discussed.
10#
發(fā)表于 2025-3-23 09:10:38 | 只看該作者
Drug Effect Deep Learner Based on Graphical Convolutional Networkation of the drug. We found that DDEP can predict drug efficacy with accuracy far better than that achieved by simple drug/target classification, and the vector representations grasp well the comprehensive states of a cell.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 05:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
江阴市| 邯郸县| 靖安县| 林甸县| 财经| 广东省| 益阳市| 永济市| 灵山县| 澜沧| 宁南县| 黄山市| 札达县| 镶黄旗| 安国市| 天门市| 镇坪县| 巢湖市| 曲水县| 墨江| 民和| 谢通门县| 桑植县| 谢通门县| 景宁| 神池县| 平江县| 赤壁市| 灵川县| 四川省| 揭阳市| 佛冈县| 比如县| 焉耆| 阿巴嘎旗| 清镇市| 湄潭县| 仁化县| 肃南| 双桥区| 沅江市|