找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Deep Learning in Computational Toxicology; Huixiao Hong Book 2023 This is a U.S. government work and not under copyri

[復(fù)制鏈接]
查看: 16530|回復(fù): 55
樓主
發(fā)表于 2025-3-21 17:57:40 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Machine Learning and Deep Learning in Computational Toxicology
編輯Huixiao Hong
視頻videohttp://file.papertrans.cn/621/620469/620469.mp4
概述Covers comprehensive view of the machine learning and deep learning algorithms, methods, and software tools.Provides many practical applications of machine learning and deep learning techniques in pre
叢書名稱Computational Methods in Engineering & the Sciences
圖書封面Titlebook: Machine Learning and Deep Learning in Computational Toxicology;  Huixiao Hong Book 2023 This is a U.S. government work and not under copyri
描述This book is a collection of machine learning and deep learning algorithms, methods, architectures, and software tools that have been developed and widely applied in predictive toxicology. It compiles a set of recent applications using state-of-the-art machine learning and deep learning techniques in analysis of a variety of toxicological endpoint data. The contents illustrate those machine learning and deep learning algorithms, methods, and software tools and summarise the applications of machine learning and deep learning in predictive toxicology with informative text, figures, and tables that are contributed by the first tier of experts. One of the major features is the case studies of applications of machine learning and deep learning in toxicological research that serve as examples for readers to learn how to apply machine learning and deep learning techniques in predictive toxicology. This book is expected to provide a reference for practical applications of machine learning anddeep learning in toxicological research. It is a useful guide for toxicologists, chemists, drug discovery and development researchers, regulatory scientists, government reviewers, and graduate students
出版日期Book 2023
關(guān)鍵詞Machine Learning; Deep Learning; Toxicology; Model; Prediction; Algorithm
版次1
doihttps://doi.org/10.1007/978-3-031-20730-3
isbn_softcover978-3-031-20732-7
isbn_ebook978-3-031-20730-3Series ISSN 2662-4869 Series E-ISSN 2662-4877
issn_series 2662-4869
copyrightThis is a U.S. government work and not under copyright protection in the U.S.; foreign copyright pro
The information of publication is updating

書目名稱Machine Learning and Deep Learning in Computational Toxicology影響因子(影響力)




書目名稱Machine Learning and Deep Learning in Computational Toxicology影響因子(影響力)學(xué)科排名




書目名稱Machine Learning and Deep Learning in Computational Toxicology網(wǎng)絡(luò)公開度




書目名稱Machine Learning and Deep Learning in Computational Toxicology網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Machine Learning and Deep Learning in Computational Toxicology被引頻次




書目名稱Machine Learning and Deep Learning in Computational Toxicology被引頻次學(xué)科排名




書目名稱Machine Learning and Deep Learning in Computational Toxicology年度引用




書目名稱Machine Learning and Deep Learning in Computational Toxicology年度引用學(xué)科排名




書目名稱Machine Learning and Deep Learning in Computational Toxicology讀者反饋




書目名稱Machine Learning and Deep Learning in Computational Toxicology讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:40:05 | 只看該作者
Huixiao HongCovers comprehensive view of the machine learning and deep learning algorithms, methods, and software tools.Provides many practical applications of machine learning and deep learning techniques in pre
板凳
發(fā)表于 2025-3-22 01:52:21 | 只看該作者
地板
發(fā)表于 2025-3-22 04:53:11 | 只看該作者
978-3-031-20732-7This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright pro
5#
發(fā)表于 2025-3-22 09:56:51 | 只看該作者
6#
發(fā)表于 2025-3-22 13:54:08 | 只看該作者
Machine Learning and Deep Learning Promote Computational Toxicology for Risk Assessment of Chemicalical reasoning from the human eye and linear experiments to artificial intelligence will improve computational toxicology for risk assessment by unearthing novel discoveries through making unexpected connections across data types, datasets, and toxicology disciplines.
7#
發(fā)表于 2025-3-22 19:56:13 | 只看該作者
8#
發(fā)表于 2025-3-22 22:51:12 | 只看該作者
2662-4869 ions of machine learning and deep learning techniques in preThis book is a collection of machine learning and deep learning algorithms, methods, architectures, and software tools that have been developed and widely applied in predictive toxicology. It compiles a set of recent applications using stat
9#
發(fā)表于 2025-3-23 04:21:31 | 只看該作者
Assessment of the Xenobiotics Toxicity Taking into Account Their Metabolismal effects. Herein, we propose the concept of integral toxicity that concomitantly reflects the overall biological activity of a pharmaceutical substance and its metabolites. The current possibilities and limitations of the multifaceted computational assessment of xenobiotics toxicity are discussed.
10#
發(fā)表于 2025-3-23 09:10:38 | 只看該作者
Drug Effect Deep Learner Based on Graphical Convolutional Networkation of the drug. We found that DDEP can predict drug efficacy with accuracy far better than that achieved by simple drug/target classification, and the vector representations grasp well the comprehensive states of a cell.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 05:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
察雅县| 黄石市| 湾仔区| 天镇县| 安平县| 上饶县| 安泽县| 道真| 磴口县| 兴隆县| 泉州市| 盘锦市| 吴江市| 凤庆县| 博白县| 长垣县| 阜宁县| 大连市| 拜城县| 浠水县| 凌源市| 荆门市| 万全县| 象山县| 宿迁市| 邵阳市| 梁河县| 安义县| 德令哈市| 济南市| 大英县| 瓦房店市| 长乐市| 黄陵县| 嵊州市| 通化县| 启东市| 正蓝旗| 格尔木市| 通海县| 陇西县|