找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning and Deep Learning in Computational Toxicology; Huixiao Hong Book 2023 This is a U.S. government work and not under copyri

[復制鏈接]
查看: 16525|回復: 55
樓主
發(fā)表于 2025-3-21 17:57:40 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Machine Learning and Deep Learning in Computational Toxicology
編輯Huixiao Hong
視頻videohttp://file.papertrans.cn/621/620469/620469.mp4
概述Covers comprehensive view of the machine learning and deep learning algorithms, methods, and software tools.Provides many practical applications of machine learning and deep learning techniques in pre
叢書名稱Computational Methods in Engineering & the Sciences
圖書封面Titlebook: Machine Learning and Deep Learning in Computational Toxicology;  Huixiao Hong Book 2023 This is a U.S. government work and not under copyri
描述This book is a collection of machine learning and deep learning algorithms, methods, architectures, and software tools that have been developed and widely applied in predictive toxicology. It compiles a set of recent applications using state-of-the-art machine learning and deep learning techniques in analysis of a variety of toxicological endpoint data. The contents illustrate those machine learning and deep learning algorithms, methods, and software tools and summarise the applications of machine learning and deep learning in predictive toxicology with informative text, figures, and tables that are contributed by the first tier of experts. One of the major features is the case studies of applications of machine learning and deep learning in toxicological research that serve as examples for readers to learn how to apply machine learning and deep learning techniques in predictive toxicology. This book is expected to provide a reference for practical applications of machine learning anddeep learning in toxicological research. It is a useful guide for toxicologists, chemists, drug discovery and development researchers, regulatory scientists, government reviewers, and graduate students
出版日期Book 2023
關鍵詞Machine Learning; Deep Learning; Toxicology; Model; Prediction; Algorithm
版次1
doihttps://doi.org/10.1007/978-3-031-20730-3
isbn_softcover978-3-031-20732-7
isbn_ebook978-3-031-20730-3Series ISSN 2662-4869 Series E-ISSN 2662-4877
issn_series 2662-4869
copyrightThis is a U.S. government work and not under copyright protection in the U.S.; foreign copyright pro
The information of publication is updating

書目名稱Machine Learning and Deep Learning in Computational Toxicology影響因子(影響力)




書目名稱Machine Learning and Deep Learning in Computational Toxicology影響因子(影響力)學科排名




書目名稱Machine Learning and Deep Learning in Computational Toxicology網絡公開度




書目名稱Machine Learning and Deep Learning in Computational Toxicology網絡公開度學科排名




書目名稱Machine Learning and Deep Learning in Computational Toxicology被引頻次




書目名稱Machine Learning and Deep Learning in Computational Toxicology被引頻次學科排名




書目名稱Machine Learning and Deep Learning in Computational Toxicology年度引用




書目名稱Machine Learning and Deep Learning in Computational Toxicology年度引用學科排名




書目名稱Machine Learning and Deep Learning in Computational Toxicology讀者反饋




書目名稱Machine Learning and Deep Learning in Computational Toxicology讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 23:40:05 | 只看該作者
Huixiao HongCovers comprehensive view of the machine learning and deep learning algorithms, methods, and software tools.Provides many practical applications of machine learning and deep learning techniques in pre
板凳
發(fā)表于 2025-3-22 01:52:21 | 只看該作者
地板
發(fā)表于 2025-3-22 04:53:11 | 只看該作者
978-3-031-20732-7This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright pro
5#
發(fā)表于 2025-3-22 09:56:51 | 只看該作者
6#
發(fā)表于 2025-3-22 13:54:08 | 只看該作者
Machine Learning and Deep Learning Promote Computational Toxicology for Risk Assessment of Chemicalical reasoning from the human eye and linear experiments to artificial intelligence will improve computational toxicology for risk assessment by unearthing novel discoveries through making unexpected connections across data types, datasets, and toxicology disciplines.
7#
發(fā)表于 2025-3-22 19:56:13 | 只看該作者
8#
發(fā)表于 2025-3-22 22:51:12 | 只看該作者
2662-4869 ions of machine learning and deep learning techniques in preThis book is a collection of machine learning and deep learning algorithms, methods, architectures, and software tools that have been developed and widely applied in predictive toxicology. It compiles a set of recent applications using stat
9#
發(fā)表于 2025-3-23 04:21:31 | 只看該作者
Assessment of the Xenobiotics Toxicity Taking into Account Their Metabolismal effects. Herein, we propose the concept of integral toxicity that concomitantly reflects the overall biological activity of a pharmaceutical substance and its metabolites. The current possibilities and limitations of the multifaceted computational assessment of xenobiotics toxicity are discussed.
10#
發(fā)表于 2025-3-23 09:10:38 | 只看該作者
Drug Effect Deep Learner Based on Graphical Convolutional Networkation of the drug. We found that DDEP can predict drug efficacy with accuracy far better than that achieved by simple drug/target classification, and the vector representations grasp well the comprehensive states of a cell.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-11 01:40
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
改则县| 尉氏县| 湖南省| 赞皇县| 湟源县| 景东| 锡林浩特市| 马关县| 九龙坡区| 阿克陶县| 屏东县| 邯郸市| 涿鹿县| 林周县| 中卫市| 贺兰县| 万盛区| 铜陵市| 龙岩市| 丽江市| 东阿县| 焦作市| 浮山县| 金堂县| 抚顺县| 临泉县| 宽甸| 花垣县| 堆龙德庆县| 卓尼县| 洞头县| 开化县| 苏尼特右旗| 南汇区| 罗甸县| 汽车| 冀州市| 前郭尔| 安龙县| 黄冈市| 毕节市|