找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Kidney and Kidney Tumor Segmentation; MICCAI 2021 Challeng Nicholas Heller,Fabian Isensee,Christopher Weight Conference proceedings 2022 Sp

[復(fù)制鏈接]
樓主: Coenzyme
41#
發(fā)表于 2025-3-28 14:46:49 | 只看該作者
42#
發(fā)表于 2025-3-28 20:51:49 | 只看該作者
43#
發(fā)表于 2025-3-29 02:25:10 | 只看該作者
44#
發(fā)表于 2025-3-29 05:27:21 | 只看該作者
Modified nnU-Net for the MICCAI KiTS21 Challenge,ataset of 300 cases and each case’s CT scan is segmented to three semantic classes: Kidney, Tumor and Cyst. Compared with KiTS19 Challenge, cyst is a new semantic class, but these two tasks are quite?close and that is why we choose nnUNet as our model and made some adjustments on it. Some important
45#
發(fā)表于 2025-3-29 08:18:49 | 只看該作者
2.5D Cascaded Semantic Segmentation for Kidney Tumor Cyst,works to automatically segment kidney and tumor and cyst in computed tomography (CT) images. First, the kidney is pre-segmented by the first stage network ResSENormUnet; then, the kidney and the tumor and cyst are fine-segmented by the second stage network DenseTransUnet, and finally, a post-process
46#
發(fā)表于 2025-3-29 11:56:22 | 只看該作者
47#
發(fā)表于 2025-3-29 17:04:19 | 只看該作者
48#
發(fā)表于 2025-3-29 23:08:48 | 只看該作者
Less is More: Contrast Attention Assisted U-Net for Kidney, Tumor and Cyst Segmentations,on tasks. We argue that the skip connections between the encoder and decoder layers pass too many redundant information, and filtered out the unnecessary information may be helpful in improving the segmentation accuracy. In this paper, we proposed a contrast attention mechanism at the skip connectio
49#
發(fā)表于 2025-3-30 03:50:32 | 只看該作者
,A Coarse-to-Fine Framework for?the?2021 Kidney and?Kidney Tumor Segmentation Challenge,tool for kidney cancer surgery. In this paper, we use a coarse-to-fine framework which is based on the nnU-Net and achieve accurate and fast segmentation of the kidney and kidney mass. The average Dice and surface Dice of segmentation predicted by our method on the test are 0.9077 and 0.8262, respec
50#
發(fā)表于 2025-3-30 04:56:14 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 03:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
麦盖提县| 上蔡县| 咸阳市| 喜德县| 鹿泉市| 屏边| 长顺县| 河南省| 孟州市| 托克逊县| 潼关县| 黑龙江省| 台前县| 抚顺县| 通江县| 邯郸市| 万宁市| 德惠市| 蕲春县| 且末县| 建瓯市| 祁东县| 怀柔区| 新野县| 紫阳县| 连江县| 盐边县| 吉木萨尔县| 闽清县| 郧西县| 团风县| 获嘉县| 西华县| 商丘市| 双峰县| 阳春市| 扶绥县| 威信县| 都兰县| 长子县| 怀柔区|