找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Kidney and Kidney Tumor Segmentation; MICCAI 2021 Challeng Nicholas Heller,Fabian Isensee,Christopher Weight Conference proceedings 2022 Sp

[復(fù)制鏈接]
樓主: Coenzyme
11#
發(fā)表于 2025-3-23 10:03:35 | 只看該作者
,Automatic Segmentation in?Abdominal CT Imaging for?the?KiTS21 Challenge,Net which consists of 3D Encoder-Decoder CNN architecture with additional Skip Connection is used. Lastly, there is a loss function to resolve the class imbalance problem frequently occurring in the task of medical imaging. S?rensen-Dice Score and Surface Dice Score on the test set are 80.13 and 68.61.
12#
發(fā)表于 2025-3-23 14:26:04 | 只看該作者
13#
發(fā)表于 2025-3-23 21:25:53 | 只看該作者
Conference proceedings 2022er 27, 2021, due to the COVID-19 pandemic...The 21 contributions presented were carefully reviewed and selected from 29 submissions. This challenge aims to develop the best system for automatic semantic segmentation of renal tumors and surrounding anatomy. .
14#
發(fā)表于 2025-3-23 23:10:46 | 只看該作者
15#
發(fā)表于 2025-3-24 06:21:35 | 只看該作者
Modified nnU-Net for the MICCAI KiTS21 Challenge,e model by specific strategies. Detailed information is available in the part of Methods. The organizer uses an evaluation method called “Hierarchical Evaluation Classes” (HECs). The HEC scores of each model are showed in the following.
16#
發(fā)表于 2025-3-24 09:35:56 | 只看該作者
17#
發(fā)表于 2025-3-24 11:10:23 | 只看該作者
18#
發(fā)表于 2025-3-24 15:51:27 | 只看該作者
3D U-Net Based Semantic Segmentation of Kidneys and Renal Masses on Contrast-Enhanced CT,he majority-prediction segmentation masks. Our model achieved test-set performance of 97.0%, 85.1%, and 81.9% volumetric Dice score, and 93.7%, 72.0%, and 70.0% surface Dice score, on combined foreground, renal masses, and renal tumors, respectively, which tied for sixth place among challenge participants.
19#
發(fā)表于 2025-3-24 21:52:06 | 只看該作者
20#
發(fā)表于 2025-3-25 01:47:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 03:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
罗甸县| 舒城县| 正宁县| 广水市| 安庆市| 滕州市| 桦川县| 海原县| 兴国县| 吴桥县| 伽师县| 崇仁县| 延川县| 阜新市| 赤壁市| 巴彦淖尔市| 太仆寺旗| 芦山县| 论坛| 盐城市| 雷波县| 玛多县| 呼玛县| 将乐县| 临武县| 巫溪县| 同仁县| 舟山市| 隆安县| 卫辉市| 云梦县| 古丈县| 新昌县| 梅州市| 文成县| 安图县| 兴山县| 厦门市| 安陆市| 浦东新区| 桃江县|