找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Kidney and Kidney Tumor Segmentation; MICCAI 2021 Challeng Nicholas Heller,Fabian Isensee,Christopher Weight Conference proceedings 2022 Sp

[復制鏈接]
查看: 11292|回復: 59
樓主
發(fā)表于 2025-3-21 20:08:49 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Kidney and Kidney Tumor Segmentation
副標題MICCAI 2021 Challeng
編輯Nicholas Heller,Fabian Isensee,Christopher Weight
視頻videohttp://file.papertrans.cn/543/542692/542692.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: Kidney and Kidney Tumor Segmentation; MICCAI 2021 Challeng Nicholas Heller,Fabian Isensee,Christopher Weight Conference proceedings 2022 Sp
描述.This book constitutes the Second International Challenge on Kidney and Kidney Tumor Segmentation, KiTS 2021, which was held in conjunction with the 24th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2021. The challenge took place virtually on September 27, 2021, due to the COVID-19 pandemic...The 21 contributions presented were carefully reviewed and selected from 29 submissions. This challenge aims to develop the best system for automatic semantic segmentation of renal tumors and surrounding anatomy. .
出版日期Conference proceedings 2022
關(guān)鍵詞artificial intelligence; automatic segmentations; computer vision; deep learning; grand challenges; image
版次1
doihttps://doi.org/10.1007/978-3-030-98385-7
isbn_softcover978-3-030-98384-0
isbn_ebook978-3-030-98385-7Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
copyrightSpringer Nature Switzerland AG 2022
The information of publication is updating

書目名稱Kidney and Kidney Tumor Segmentation影響因子(影響力)




書目名稱Kidney and Kidney Tumor Segmentation影響因子(影響力)學科排名




書目名稱Kidney and Kidney Tumor Segmentation網(wǎng)絡公開度




書目名稱Kidney and Kidney Tumor Segmentation網(wǎng)絡公開度學科排名




書目名稱Kidney and Kidney Tumor Segmentation被引頻次




書目名稱Kidney and Kidney Tumor Segmentation被引頻次學科排名




書目名稱Kidney and Kidney Tumor Segmentation年度引用




書目名稱Kidney and Kidney Tumor Segmentation年度引用學科排名




書目名稱Kidney and Kidney Tumor Segmentation讀者反饋




書目名稱Kidney and Kidney Tumor Segmentation讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:29:38 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:43:17 | 只看該作者
,Extraction of?Kidney Anatomy Based on?a?3D U-ResNet with?Overlap-Tile Strategy,, while a rule-based postprocessing was applied to remove false-positive artefacts. Our model achieved 0.812 average dice, 0.694 average surface dice and 0.7 tumor dice. This led to the 12.5th position in the KiTS21 challenge.
地板
發(fā)表于 2025-3-22 08:23:50 | 只看該作者
,An Ensemble of?3D U-Net Based Models for?Segmentation of?Kidney and?Masses in?CT Scans,tions, including the use of transfer learning, an unsupervised regularized loss, custom postprocessing, and multi-annotator ground truth that mimics the evaluation protocol. Our submission has reached the 2nd place in the KiTS21 challenge.
5#
發(fā)表于 2025-3-22 09:53:16 | 只看該作者
,Automated Kidney Tumor Segmentation with?Convolution and?Transformer Network,r improve segmentation performance. Experimental results on the 2021 kidney and kidney tumor segmentation (kits21) challenge demonstrated that our method achieved average dice of 61.6%, surface dice of 49.1%, and tumor dice of 50.52%, respectively, which ranked the . place on the kits21 challenge.
6#
發(fā)表于 2025-3-22 13:02:53 | 只看該作者
,A Two-Stage Cascaded Deep Neural Network with?Multi-decoding Paths for?Kidney Tumor Segmentation,. We evaluated our method on the 2021 Kidney and Kidney Tumor Segmentation Challenge (KiTS21) dataset. The method achieved Dice score, Surface Dice and Tumor Dice of 69.4%, 56.9% and 51.9% respectively, in the test cases. The model of cascade network proposed in this paper has a promising application prospect in kidney cancer diagnosis.
7#
發(fā)表于 2025-3-22 17:50:44 | 只看該作者
2.5D Cascaded Semantic Segmentation for Kidney Tumor Cyst,work ResSENormUnet; then, the kidney and the tumor and cyst are fine-segmented by the second stage network DenseTransUnet, and finally, a post-processing operation based on a 3D connected region is used for the removal of false-positive segmentation results. We evaluate this approach in the KiTS21 challenge, which shows promising performance.
8#
發(fā)表于 2025-3-22 21:56:08 | 只看該作者
9#
發(fā)表于 2025-3-23 03:21:31 | 只看該作者
10#
發(fā)表于 2025-3-23 08:49:48 | 只看該作者
,A Coarse-to-Fine Framework for?the?2021 Kidney and?Kidney Tumor Segmentation Challenge,ion of the kidney and kidney mass. The average Dice and surface Dice of segmentation predicted by our method on the test are 0.9077 and 0.8262, respectively. Our method outperformed all other teams and achieved . in the KITS2021 challenge.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 08:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
乡宁县| 敦煌市| 鄂温| 达拉特旗| 宜阳县| 贡觉县| 嵩明县| 巴彦县| 卢龙县| 河池市| 新建县| 长阳| 广德县| 遵义县| 抚顺县| 海城市| 偃师市| 丹江口市| 浮梁县| 山阳县| 涟源市| 永丰县| 蓝田县| 平和县| 张北县| 巫山县| 江源县| 吉木萨尔县| 太和县| 浠水县| 道孚县| 田阳县| 西充县| 横峰县| 定襄县| 什邡市| 昆山市| 霸州市| 尉氏县| 文山县| 尤溪县|