找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Kidney and Kidney Tumor Segmentation; MICCAI 2021 Challeng Nicholas Heller,Fabian Isensee,Christopher Weight Conference proceedings 2022 Sp

[復(fù)制鏈接]
樓主: Coenzyme
51#
發(fā)表于 2025-3-30 10:57:13 | 只看該作者
Squeeze-and-Excitation Encoder-Decoder Network for Kidney and Kidney Tumor Segmentation in CT Imageffective control methods. The precise and automatic segmentation of kidney tumors in computed tomography (CT) is an important prerequisite for medical methods such as pathological localization and radiotherapy planning, However, due to the large differences in the shape, size, and location of kidney
52#
發(fā)表于 2025-3-30 13:02:52 | 只看該作者
,A Two-Stage Cascaded Deep Neural Network with?Multi-decoding Paths for?Kidney Tumor Segmentation,or kidney cancer diagnosis. Automatic and accurate kidney and kidney tumor segmentation in CT scans is crucial for treatment and surgery planning. However, kidney tumors and cysts have various morphologies, with blurred edges and unpredictable positions. Therefore, precise segmentation of tumors and
53#
發(fā)表于 2025-3-30 20:26:09 | 只看該作者
54#
發(fā)表于 2025-3-31 00:32:27 | 只看該作者
,Automatic Segmentation in?Abdominal CT Imaging for?the?KiTS21 Challenge,t. Convolutional Neural Network is trained in patches of three-dimensional abdominal CT imaging. For the segmentation of the 3D image, a variant of U-Net which consists of 3D Encoder-Decoder CNN architecture with additional Skip Connection is used. Lastly, there is a loss function to resolve the cla
55#
發(fā)表于 2025-3-31 04:01:40 | 只看該作者
56#
發(fā)表于 2025-3-31 08:34:16 | 只看該作者
57#
發(fā)表于 2025-3-31 11:21:44 | 只看該作者
58#
發(fā)表于 2025-3-31 15:10:53 | 只看該作者
Leveraging Clinical Characteristics for Improved Deep Learning-Based Kidney Tumor Segmentation on Cnced computed tomography (CT). A total of 300 kidney cancer patients with contrast-enhanced CT scans and clinical characteristics were included. A baseline segmentation of the kidney cancer was performed using a 3D U-Net. Input to the U-Net were the contrast-enhanced CT images, output were segmentat
59#
發(fā)表于 2025-3-31 20:59:26 | 只看該作者
60#
發(fā)表于 2025-3-31 22:30:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 08:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
遂昌县| 宣城市| 木兰县| 邻水| 靖远县| 天津市| 运城市| 宁陕县| 宣威市| 苏尼特右旗| 江永县| 马关县| 汕尾市| 泸水县| 昆明市| 连云港市| 新沂市| 三穗县| 新干县| 临江市| 清远市| 桓仁| 潮州市| 乌审旗| 邵东县| 临猗县| 淳化县| 湘阴县| 三门峡市| 东源县| 德安县| 沅陵县| 萝北县| 团风县| 郁南县| 江华| 军事| 兴化市| 图木舒克市| 仙游县| 朔州市|