找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Hypoelliptic Laplacian and Bott–Chern Cohomology; A Theorem of Riemann Jean-Michel Bismut Book 2013 Springer Basel 2013 Riemann-Roch theore

[復制鏈接]
樓主: Helmet
21#
發(fā)表于 2025-3-25 05:20:34 | 只看該作者
Werte schaffen durch M&A-TransaktionenThe purpose of this chapter is to establish the main result of this book, i.e., we give a Riemann-Roch-Grothendieck formula for the class . (.,.). When ., this result was already established in Theorem 5.2.1 using elliptic superconnections. The introduction in . of hypoelliptic superconnections did not allow us to eliminate this assumption.
22#
發(fā)表于 2025-3-25 09:27:31 | 只看該作者
The Riemannian adiabatic limit,The purpose of this chapter is to study the adiabatic limit of the Levi-Civita connection on a fibred manifold. This study was initiated in [B86a], and continued in Bismut-Cheeger [BC89], Berline-Getzler-Vergne [BeGeV92], Berthomieu-Bismut [BerB94] and Bismut [B97].
23#
發(fā)表于 2025-3-25 15:17:51 | 只看該作者
24#
發(fā)表于 2025-3-25 17:11:23 | 只看該作者
25#
發(fā)表于 2025-3-25 20:20:36 | 只看該作者
26#
發(fā)表于 2025-3-26 01:21:44 | 只看該作者
The hypoelliptic superconnections,The purpose of this chapter is to extend the results of [B08, section 3] to the case where .. is not supposed to be closed. More precisely, let . :. be the total space of ., and let . :. be the obvious projection with fibre ..
27#
發(fā)表于 2025-3-26 07:52:05 | 只看該作者
28#
發(fā)表于 2025-3-26 09:42:53 | 只看該作者
29#
發(fā)表于 2025-3-26 14:19:55 | 只看該作者
The hypoelliptic superconnection forms when ,,The purpose of this chapter is to study the hypoelliptic superconnection forms of . in the case where .. In particular, we show that, as in the elliptic case, the form . can be explicitly computed.
30#
發(fā)表于 2025-3-26 19:20:57 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-8 13:36
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
平原县| 区。| 德令哈市| 太湖县| 湘潭市| 宁波市| 石阡县| 鄂温| 池州市| 岱山县| 渝北区| 那坡县| 桐柏县| 伊春市| 湖口县| 同江市| 西藏| 丹巴县| 鄂州市| 辽中县| 东阿县| 襄垣县| 图木舒克市| 名山县| 南京市| 满城县| 沧州市| 潮州市| 方正县| 万盛区| 中卫市| 永嘉县| 项城市| 江城| 平顶山市| 福海县| 广东省| 天全县| 馆陶县| 嵩明县| 孙吴县|